Applying state‐of‐the‐art microscopy techniques to understand the degradation of copper for nuclear waste canisters

[1]  K. Daub,et al.  The Effect of Alloy Composition on The Dealloying of Ni- and Fe-Based Engineering Alloys in Boiling Caustic Solutions , 2022, Journal of The Electrochemical Society.

[2]  R. Newman,et al.  Alloying effects in high temperature molten salt corrosion , 2021, Corrosion Science.

[3]  D. Hall,et al.  An evaluation of corrosion processes affecting copper-coated nuclear waste containers in a deep geological repository , 2020 .

[4]  J. Legoux,et al.  Microstructural characterization of copper coatings in development for application to used nuclear fuel containers , 2020, Journal of Nuclear Materials.

[5]  H. Terryn,et al.  Application of In Situ Liquid Cell Transmission Electron Microscopy in Corrosion Studies: A Critical Review of Challenges and Achievements , 2019, CORROSION.

[6]  D. Kong,et al.  Passivity breakdown on copper: Influence of borate anion , 2019, Electrochimica Acta.

[7]  J. Legoux,et al.  Microstructural and bulk properties evolution of cold-sprayed copper coatings after low temperature annealing , 2019, Materialia.

[8]  D. Shoesmith,et al.  Synchrotron-Based Micro-CT Investigation of Oxic Corrosion of Copper-Coated Carbon Steel for Potential Use in a Deep Geological Repository for Used Nuclear Fuel , 2018, Geosciences.

[9]  B. Langelier,et al.  An atom probe tomography study of Pb-caustic SCC in alloy 800 , 2018, Corrosion Science.

[10]  A. Korinek,et al.  High resolution characterization of sulfur-assisted degradation in alloy 800 , 2018, Corrosion Science.

[11]  M. Boman,et al.  Corrosion of copper in pure O 2 -free water? , 2018, Corrosion Science.

[12]  Michael F. Ashby,et al.  Materials selection for nuclear applications: Challenges and opportunities , 2018 .

[13]  M. G. Burke,et al.  Multiscale correlative tomography : an investigation of creep cavitation in 316 stainless steel Journal Item , 2018 .

[14]  M. Boman,et al.  Copper in ultrapure water, a scientific issue under debate , 2017 .

[15]  M. G. Burke,et al.  The application of in situ analytical transmission electron microscopy to the study of preferential intergranular oxidation in Alloy 600. , 2017, Ultramicroscopy.

[16]  G. Botton,et al.  An atom probe tomography study of internal oxidation processes in Alloy 600 , 2016 .

[17]  M. Moody,et al.  Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels , 2015 .

[18]  A. Wilkinson,et al.  Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels. , 2015, Micron.

[19]  S. Moisa,et al.  Corrosion of copper in distilled water without O2 and the detection of produced hydrogen , 2015 .

[20]  G. Hultquist Why copper may be able to corrode in pure water , 2015 .

[21]  G. Botton,et al.  Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen , 2015 .

[22]  C. Dong,et al.  Passivity Breakdown on Copper: Influence of Chloride Ion , 2014 .

[23]  M. Olszta,et al.  Grain boundary depletion and migration during selective oxidation of Cr in a Ni–5Cr binary alloy exposed to high-temperature hydrogenated water , 2014 .

[24]  G. Botton,et al.  Analytical electron microscopy of a crack tip extracted from a stressed Alloy 800 sample exposed to an acid sulfate environment. , 2014, Micron.

[25]  D. Shoesmith,et al.  Mechanisms of Film Growth on Copper in Aqueous Solutions Containing Sulphide and Chloride under Voltammetric Conditions , 2014 .

[26]  M. Olszta,et al.  Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary alloy exposed to high-temperature water , 2013 .

[27]  G. Smith,et al.  Nanoscale characterisation of grain boundary oxidation in cold-worked stainless steels , 2012 .

[28]  Takuyo Yamada,et al.  The role of cold work and applied stress on surface oxidation of 304 stainless steel , 2012 .

[29]  D. Shoesmith,et al.  Long-term corrosion of copper in a dilute anaerobic sulfide solution , 2011 .

[30]  L. Werme,et al.  Comment on Hultquist et al. “Water Corrodes Copper” [Catal. Lett. 132 (2009) 311] , 2010 .

[31]  J. C. Wren,et al.  The Electrochemical Response of Preoxidized Copper in Aqueous Sulfide Solutions , 2007 .

[32]  D Lawrence,et al.  In situ site-specific specimen preparation for atom probe tomography. , 2007, Ultramicroscopy.

[33]  D. Shoesmith,et al.  Sulfide film formation on copper under electrochemical and natural corrosion conditions , 2007 .

[34]  B. Gault,et al.  Investigation of an oxide layer by femtosecond-laser-assisted atom probe tomography , 2006 .

[35]  J. Legoux,et al.  The effect of annealing on trapped copper oxides in particle-particle interfaces of cold-sprayed Cu coatings , 2022, Scripta Materialia.

[36]  D. Hall,et al.  Communication—A Method to Measure Extremely Low Corrosion Rates of Copper Metal in Anoxic Aqueous Media , 2019, Journal of The Electrochemical Society.

[37]  C. Dong,et al.  Passivity Breakdown on Copper: Influence of Temperature , 2016 .

[38]  M. Orazem,et al.  Nanometer-Scale Corrosion of Copper in De-Aerated Deionized Water , 2014 .

[39]  J. Vegelius,et al.  X-ray absorption spectroscopy of electrochemically oxidized Cu exposed to Na2S , 2012 .

[40]  A. Rosengren,et al.  Hydrogen gas production during corrosion of copper by water , 2011 .