Type II Cepheids in the Milky Way disc. Chemical composition of two new W Virginis stars: DD Vel and HQ Car

Context. A robust classification of Cepheids into their different sub-classes and, in particular, between classical and Type II Cepheids, is necessary to properly calibrate the period-luminosity relations and for populations studies in the Galactic disc. Type II Cepheids are, however, very diverse, and classifications based either on intrinsic (period, light curve) or external parameters (e.g., [Fe/H], |z|) do not provide a unique classification. Aims. We want to ascertain the classification of two Cepheids, HQ Car and DD Vel, that are sometimes classified as classical Cepheids and sometimes as Type II Cepheids. Methods. To achieve this goal, we examine both their chemical composition and the presence of specific features in their spectra. Results. We find emission features in the Hα and in the 5875.64 A He I lines that are typical of W Vir stars. The [Na/Fe] (or [Na/Zn]) abundances are typical of thick-disc stars, while BL Her stars are Na-overabundant ([Na/Fe] > +0.5 dex). Finally, the two Cepheids show a possible (HQ Car) or probable (DD Vel) signature of mild dust-gas separation that is usually observed only in long-period type II Cepheids and RV Tau stars. Conclusions. These findings clearly indicate that HQ Car and DD Vel are both Type II Cepheids from the W Vir sub-class. Several studies have reported an increase in the Cepheids’ abundance dispersion towards the outer (thin) disc. A detailed inspection of the Cepheid classification, in particular for those located in the outer disc, will indicate whether this feature is real or simply an artefact of the inclusion of type II Cepheids belonging to the thick disc in the current samples.

[1]  A. H. Joy Radial Velocities of Cepheid Variable Stars , 1937 .

[2]  G. Wallerstein Radial Velocities and Spectral Characteristics of the Population II Cepheids m5 No. 42, m5 No. 84, and TW Capricorni. , 1958 .

[3]  THE DISTRIBUTION OF THE ELEMENTS IN THE GALACTIC DISK. III. A RECONSIDERATION OF CEPHEIDS FROM l = 30° TO 250° , 2011, 1108.1947.

[4]  University of Michigan,et al.  Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 03/07/07 TRACING THE GALACTIC THICK DISK TO SOLAR METALLICITIES 1 , 2022 .

[5]  C. Prieto,et al.  The Gaia-ESO Survey: the chemical structure of the Galactic discs from the first internal data release ?;?? , 2014, 1408.6687.

[6]  Bangalore,et al.  Elemental abundance survey of the Galactic thick disc , 2005, astro-ph/0512505.

[7]  H. C. Harris A catalogue of field Type II Cepheids , 1985 .

[8]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[9]  B. Carney,et al.  Elemental Abundance Ratios in Stars of the Outer Galactic Disk. III. Cepheids , 2005, astro-ph/0512348.

[10]  G. González,et al.  Abundance analyses of type II cepheids in globular clusters , 1997 .

[11]  H. C. Stempels,et al.  VALD{2: Progress of the Vienna Atomic Line Data Base ? , 1999 .

[12]  Using Cepheids to determine the galactic abundance gradient I. The solar neighbourhood , 2001, astro-ph/0112525.

[13]  G. Carraro,et al.  Clues on the Galactic evolution of sulphur from star clusters , 2014, 1407.0485.

[14]  C. D. Laney,et al.  On the fine structure of the Cepheid metallicity gradient in the Galactic thin disk , 2014, 1403.6128.

[15]  J. Prochaska,et al.  On the Perils of Hyperfine Splitting: A Reanalysis of Mn and Sc Abundance Trends , 2000, astro-ph/0005471.

[16]  G. Fazio,et al.  AN INFRARED NEBULA ASSOCIATED WITH δ CEPHEI: EVIDENCE OF MASS LOSS? , 2010, 1102.0305.

[17]  R. L. Kurucz,et al.  New Grids of ATLAS9 Model Atmospheres , 2004, astro-ph/0405087.

[18]  D. Lambert,et al.  High-resolution optical spectroscopy of the F supergiant protoplanetary nebula IRAS 18095+2704 , 2010, 1008.0358.

[19]  E. Guinan,et al.  CLASSICAL CEPHEIDS REQUIRE ENHANCED MASS LOSS , 2012, 1210.6042.

[20]  G. Wallerstein,et al.  The Shock-Wave Model for the Population II Cepheids. , 1959 .

[21]  J. B. Oke,et al.  The helium abundance in the population II Cepheids, W Virginis , 1989 .

[22]  Sulphur abundances in disk stars: A correlation with silicon , 2002, astro-ph/0206075.

[23]  David L. Lambert,et al.  The Chemical Compositions of the Type II Cepheids—The BL Herculis and W Virginis Variables , 2007, 0706.2029.

[24]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[25]  The Distribution Of The Elements In The Galactic Disk. III. A Reconsideration Of Cepheids From L=30 Degrees To 250 Degrees , 2011 .

[26]  The chemical compositions of Galactic disc F and G dwarfs , 2002, astro-ph/0211551.

[27]  G. Fazio,et al.  GALACTIC CEPHEIDS WITH SPITZER. II. SEARCH FOR EXTENDED INFRARED EMISSION , 2010, 1011.3386.

[28]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[29]  Paul Bryans,et al.  THE EXTREME-ULTRAVIOLET EMISSION FROM SUN-GRAZING COMETS , 2012, 1209.5708.

[30]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the Galactic thick to thin disc transition , 2014, 1403.7568.

[31]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. II. Stellar Models and Isochrones for an α-enhanced Metal Distribution , 2006 .

[32]  Jennifer A. Johnson Abundances of 30 elements in 23 metal-poor stars , 2001, astro-ph/0111181.

[33]  Guillermo Gonzalez,et al.  ST Pup: a binary Type II Cepheid with a peculiar chemical composition , 1996 .

[34]  Toshihiko Tanabe,et al.  The period–luminosity relation for type II Cepheids in globular clusters , 2006, astro-ph/0606609.

[35]  P. Schechter,et al.  Gamma velocities of 58 faint Milky Way Cepheids , 1992 .

[36]  G. Wallerstein,et al.  The Distant Cepheid QQ Persei , 2008 .

[37]  Sulphur and zinc abundances in Galactic halo stars revisited , 2007, astro-ph/0702689.

[38]  Bangalore,et al.  Abundance Analyses of Field RV Tauri Stars. VI. An Extended Sample , 2005, astro-ph/0503344.

[39]  Shawn Langan,et al.  Photometry of Type II Cepheids. III. The Intermediate-Period Stars , 2005 .

[40]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones , 2004, astro-ph/0405193.

[41]  E. Schmidt,et al.  Photometry of Type II Cepheids. I. The Long-Period Stars , 2004 .

[42]  C. Soubiran,et al.  Abundances of Cu and Zn in metal-poor stars: Clues for Galaxy evolution , 2002, astro-ph/0209401.

[43]  C. D. Laney,et al.  Galactic abundance gradients from Cepheids : On the iron abundance gradient around 10-12 kpc , 2008, 0810.0205.

[44]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[45]  O. Chesneau,et al.  Extended envelopes around Galactic Cepheids IV. T Monocerotis and X Sagittarii from mid-infrared interferometry with VLTI/MIDI , 2013, 1309.0854.

[46]  W. Dehnen,et al.  Local kinematics and the local standard of rest , 2009, 0912.3693.

[47]  Nathaniel R. Butler,et al.  CONSTRUCTION OF A CALIBRATED PROBABILISTIC CLASSIFICATION CATALOG: APPLICATION TO 50k VARIABLE SOURCES IN THE ALL-SKY AUTOMATED SURVEY , 2012, 1204.4180.

[48]  G. Fazio,et al.  Evidence for Pulsation-Driven Mass Loss from δ Cephei , 2013 .

[49]  George Wallerstein,et al.  The Cepheids of Population II and Related Stars , 2002 .

[50]  D. Lambert,et al.  Comprehensive abundance analysis of red giants in the open clusters NGC 752, NGC 1817, NGC 2360 and NGC , 2011, 1109.2678.

[51]  A. Dupree,et al.  Galactic chemical evolution of sulphur - Sulphur abundances from the [S i] λ1082 nm line in giants , 2013, 1309.0114.

[52]  M. Templeton,et al.  Neutral and ionized emission lines in the type II Cepheid W Virginis , 2011 .

[53]  C. Vuerli,et al.  Star Counts in the Globular Cluster ω Centauri. I. Bright Stellar Components , 2007, astro-ph/0703401.

[54]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[55]  G. González,et al.  The carbon Cepheid V553 Cen: evidence of triple-α and CNO cycling , 1996 .

[56]  Canada.,et al.  Manganese in dwarf spheroidal galaxies , 2012, 1203.4491.

[57]  G. González,et al.  The carbon Cepheid RT Trianguli Australis: additional evidence of triple-α and CNO cycling , 2000 .

[58]  Bernard Delabre,et al.  Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory , 2000, Astronomical Telescopes and Instrumentation.

[59]  A. H. Joy,et al.  Spectra of the Brighter Variables in Globular Clusters. , 1949 .

[60]  H. Harris,et al.  Kinematics of field type II Cepheid variables. , 1984 .

[61]  G. Perrin,et al.  Extended envelopes around Galactic Cepheids I. Carinae from near and mid-infrared interferometry with the VLTI , 2006 .

[62]  D. Lambert,et al.  Chemical composition of a sample of candidate post-asymptotic giant branch stars , 2012 .

[63]  USA,et al.  alpha-, r-, and s-process element trends in the Galactic thin and thick disks , 2004, astro-ph/0412132.

[64]  D. M. Allen,et al.  Mn, Cu, and Zn abundances in barium stars and their correlations with neutron capture elements , 2010, 1009.4688.

[65]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[66]  B. Carney,et al.  A Comparison of the Chemical Evolutionary Histories of the Galactic Thin Disk and Thick Disk Stellar Populations , 2005, astro-ph/0509267.

[67]  Michel Casse,et al.  Origin and evolution of the elements , 1993 .