Ideal Hierarchical Secret Sharing Schemes

Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization is based on the well-known connection between ideal secret sharing schemes and matroids and, more specifically, on the connection between ideal multipartite secret sharing schemes and integer polymatroids. In particular, we prove that every hierarchical matroid port admits an ideal linear secret sharing scheme over every large enough finite field. Finally, we use our results to present a new proof for the existing characterization of the ideal weighted threshold access structures.

[1]  Takayuki Hibi,et al.  Discrete Polymatroids , 2002 .

[2]  Ehud D. Karnin,et al.  On secret sharing systems , 1983, IEEE Trans. Inf. Theory.

[3]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[4]  Carles Padró,et al.  Natural Generalizations of Threshold Secret Sharing , 2011, IEEE Transactions on Information Theory.

[5]  Germán Sáez,et al.  New Results on Multipartite Access Structures , 2006, IACR Cryptol. ePrint Arch..

[6]  Gustavus J. Simmons,et al.  How to (Really) Share a Secret , 1988, CRYPTO.

[7]  László Csirmaz,et al.  The Size of a Share Must Be Large , 1994, Journal of Cryptology.

[8]  Ernest F. Brickell,et al.  On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.

[9]  G. R. Blakley,et al.  Secret Sharing Schemes , 2011, Encyclopedia of Cryptography and Security.

[10]  Carles Padró,et al.  On secret sharing schemes, matroids and polymatroids , 2006, J. Math. Cryptol..

[11]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[12]  Siaw-Lynn Ng A Representation of a Family of Secret Sharing Matroids , 2003, Des. Codes Cryptogr..

[13]  Nira Dyn,et al.  Multipartite Secret Sharing by Bivariate Interpolation , 2006, ICALP.

[14]  James G. Oxley,et al.  Matroid theory , 1992 .

[15]  J. Massey Some Applications of Coding Theory in Cryptography , 1999 .

[16]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[17]  Alfredo De Santis,et al.  On the Size of Shares for Secret Sharing Schemes , 1991, CRYPTO.

[18]  Carles Padró,et al.  Secret Sharing Schemes with Bipartite Access Structure , 1998, EUROCRYPT.

[19]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[20]  K. Martin,et al.  Perfect secret sharing schemes on five participants , 1996 .

[21]  Carles Padró,et al.  Ideal Secret Sharing Schemes Whose Minimal Qualified Subsets Have at Most Three Participants , 2006, SCN.

[22]  Tamir Tassa Hierarchical Threshold Secret Sharing , 2004, TCC.

[23]  Paul Seymour,et al.  A FORBIDDEN MINOR CHARACTERIZATION OF MATROID PORTS , 1976 .

[24]  James L. Massey,et al.  Minimal Codewords and Secret Sharing , 1999 .

[25]  Weighted Threshold Secret Sharing Schemes , 1999, Inf. Process. Lett..

[26]  Michael J. Collins A Note on Ideal Tripartite Access Structures , 2002, IACR Cryptol. ePrint Arch..

[27]  Siaw-Lynn Ng,et al.  On the Composition of Matroids and Ideal Secret Sharing Schemes , 2001, Des. Codes Cryptogr..

[28]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[29]  Enav Weinreb,et al.  Monotone circuits for monotone weighted threshold functions , 2006, Inf. Process. Lett..

[30]  Nira Dyn,et al.  Multipartite Secret Sharing by Bivariate Interpolation , 2008, Journal of Cryptology.

[31]  Alexei E. Ashikhmin,et al.  Almost Affine Codes , 1998, Des. Codes Cryptogr..

[32]  K. Murota Discrete Convex Analysis: Monographs on Discrete Mathematics and Applications 10 , 2003 .

[33]  Carles Padró,et al.  Correction to "Secret Sharing Schemes With Bipartite Access Structure" , 2004, IEEE Trans. Inf. Theory.

[34]  Suresh C. Kothari,et al.  Generalized Linear Threshold Scheme , 1985, CRYPTO.

[35]  Siaw-Lynn Ng Ideal secret sharing schemes with multipartite access structures , 2006 .

[36]  Amos Beimel,et al.  Secret-Sharing Schemes: A Survey , 2011, IWCC.

[37]  Rita Vincenti,et al.  Three-level secret sharing schemes from the twisted cubic , 2010, Discret. Math..

[38]  Ernest F. Brickell,et al.  Some Ideal Secret Sharing Schemes , 1990, EUROCRYPT.

[39]  Carles Padró,et al.  Ideal Multipartite Secret Sharing Schemes , 2007, Journal of Cryptology.

[40]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.

[41]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[42]  W. Marsden I and J , 2012 .

[43]  F. Mat Two Constructions on Limits of Entropy Functions , 2007, IEEE Trans. Inf. Theory.

[44]  Tamir Tassa,et al.  Characterizing Ideal Weighted Threshold Secret Sharing , 2008, SIAM J. Discret. Math..

[45]  JM Jeroen Doumen,et al.  Some applications of coding theory in cryptography , 2003 .

[46]  Alfred Lehman,et al.  A Solution of the Shannon Switching Game , 1964 .

[47]  Albrecht Beutelspacher,et al.  On 2-level secret sharing , 1993, Des. Codes Cryptogr..

[48]  Douglas R. Stinson,et al.  An explication of secret sharing schemes , 1992, Des. Codes Cryptogr..

[49]  Frantisek Matús,et al.  Matroid representations by partitions , 1999, Discret. Math..

[50]  A. Schrijver A Course in Combinatorial Optimization , 1990 .

[51]  Paul D. Seymour On secret-sharing matroids , 1992, J. Comb. Theory, Ser. B.