Donaldson–Thomas theory of 𝒜n×P1

Abstract We study the relative Donaldson–Thomas theory of 𝒜n×P1, where 𝒜n is the surface resolution of type An singularity. The action of divisor operators in the theory is expressed in terms of operators of the affine algebra $\glh $ on Fock space. Assuming a nondegeneracy conjecture, this gives a complete solution for the theory. The results complete the comparison of this theory with the Gromov–Witten theory of 𝒜n×P1 and the quantum cohomology of the Hilbert scheme of points on 𝒜n.

[1]  Richard P. Thomas,et al.  Curve counting via stable pairs in the derived category , 2007, 0707.2348.

[2]  D. Maulik,et al.  Quantum cohomology of the Hilbert scheme of points on A_n-resolutions , 2008, 0802.2737.

[3]  D. Maulik Gromov-Witten theory of A_n-resolutions , 2008, 0802.2681.

[4]  Baosen Wu The moduli stack of stable relative ideal sheaves , 2007, math/0701074.

[5]  A. Okounkov,et al.  Gromov–Witten theory and Donaldson–Thomas theory, II , 2004, Compositio Mathematica.

[6]  R. Pandharipande,et al.  Gromov–Witten theory and Donaldson–Thomas theory, I , 2003, Compositio Mathematica.

[7]  A. Okounkov,et al.  The local Donaldson–Thomas theory of curves , 2005, math/0512573.

[8]  R. Pandharipande,et al.  A topological view of Gromov-Witten theory , 2004, math/0412503.

[9]  A. Okounkov,et al.  Quantum cohomology of the Hilbert scheme of points in the plane , 2004, math/0411210.

[10]  J. Bryan,et al.  The local Gromov-Witten theory of curves , 2004, math/0411037.

[11]  Chiu-Chu Melissa Liu,et al.  A mathematical theory of the topological vertex , 2004, math/0408426.

[12]  Zhenbo Qin,et al.  Hilbert schemes of points on the minimal resolution and soliton equations , 2004, math/0404540.

[13]  A. Okounkov,et al.  Gromov-Witten theory, Hurwitz theory, and completed cycles , 2002, math/0204305.

[14]  S. Katz,et al.  Multiple covers and the integrality conjecture for rational curves in Calabi-Yau threefolds , 1999, math/9911056.

[15]  H. Nakajima More lectures on Hilbert schemes of points on surfaces , 1999, 1401.6782.

[16]  中島 啓 Lectures on Hilbert schemes of points on surfaces , 1999 .

[17]  R. Pandharipande,et al.  Localization of virtual classes , 1997, alg-geom/9708001.

[18]  H. Nakajima Jack polynomials and Hilbert schemes of points on surfaces , 1996, alg-geom/9610021.

[19]  H. Nakajima Heisenberg algebra and Hilbert schemes of points on projective surfaces , 1995, alg-geom/9507012.

[20]  I. Grojnowski Instantons and affine algebras I: The Hilbert scheme and vertex operators , 1995, alg-geom/9506020.