Control of microRNA biogenesis and transcription by cell signaling pathways.

[1]  Diana D. Blanton In Recognition , 2008 .

[2]  Simone Brabletz,et al.  The ZEB1/miR‐200 feedback loop controls Notch signalling in cancer cells , 2011, The EMBO journal.

[3]  P. Kantharidis,et al.  TGF-β Regulates miR-206 and miR-29 to Control Myogenic Differentiation through Regulation of HDAC4 , 2011, The Journal of Biological Chemistry.

[4]  J. Corbo,et al.  Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. , 2011, The Journal of clinical investigation.

[5]  Zhonghan Li,et al.  Small RNA-mediated regulation of iPS cell generation , 2011, The EMBO journal.

[6]  Diana M Vallejo,et al.  Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells , 2011, The EMBO journal.

[7]  G. Hannon,et al.  Small RNA sorting: matchmaking for Argonautes , 2011, Nature Reviews Genetics.

[8]  Shu Liu,et al.  Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. , 2010, Genes & development.

[9]  D. Pan,et al.  The hippo signaling pathway in development and cancer. , 2010, Developmental cell.

[10]  B. Davis-Dusenbery,et al.  Mechanisms of control of microRNA biogenesis. , 2010, Journal of biochemistry.

[11]  E. Olson,et al.  Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. , 2010, Cancer cell.

[12]  F. Slack,et al.  OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma , 2010, Nature.

[13]  A. Hata,et al.  Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. , 2010, Molecular cell.

[14]  Jia Yu,et al.  miRNA-96 suppresses KRAS and functions as a tumor suppressor gene in pancreatic cancer. , 2010, Cancer research.

[15]  Steven Y. Cheng,et al.  MicroRNA-214 Promotes Myogenic Differentiation by Facilitating Exit from Mitosis via Down-regulation of Proto-oncogene N-ras* , 2010, The Journal of Biological Chemistry.

[16]  W. Filipowicz,et al.  Regulation of mRNA translation and stability by microRNAs. , 2010, Annual review of biochemistry.

[17]  Eran Segal,et al.  EGF Decreases the Abundance of MicroRNAs That Restrain Oncogenic Transcription Factors , 2010, Science Signaling.

[18]  C. Rogler,et al.  Overexpression of miR-21 Promotes an In vitro Metastatic Phenotype by Targeting the Tumor Suppressor RHOB , 2010, Molecular Cancer Research.

[19]  Stefano Piccolo,et al.  MicroRNA control of signal transduction , 2010, Nature Reviews Molecular Cell Biology.

[20]  F. Slack,et al.  Regression of murine lung tumors by the let-7 microRNA , 2009, Oncogene.

[21]  Beth Israel,et al.  Decision letter: Replication Study: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010 .

[22]  B. O’Malley,et al.  Maturation of microRNA is hormonally regulated by a nuclear receptor. , 2009, Molecular cell.

[23]  Zhenghe Wang,et al.  microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. , 2009, Cancer research.

[24]  Z. Paroo,et al.  Phosphorylation of the Human MicroRNA-Generating Complex Mediates MAPK/Erk Signaling , 2009, Cell.

[25]  Hiroshi I. Suzuki,et al.  Modulation of microRNA processing by p53 , 2009, Nature.

[26]  T. Kwok,et al.  The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. , 2009, Carcinogenesis.

[27]  A. Brivanlou,et al.  The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection. , 2009, Developmental cell.

[28]  J. Rossi,et al.  TGF-β activates Akt kinase via a microRNA-dependent amplifying circuit targeting PTEN , 2009, Nature Cell Biology.

[29]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[30]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[31]  M. D'Esposito,et al.  An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation , 2009, Oncogene.

[32]  Eric C. Lai,et al.  Biological principles of microRNA-mediated regulation: shared themes amid diversity , 2008, Nature Reviews Genetics.

[33]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[34]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[35]  E. Lai,et al.  microRNA control of cell-cell signaling during development and disease , 2008, Cell cycle.

[36]  J. Massagué,et al.  TGFβ in Cancer , 2008, Cell.

[37]  Phillip A Sharp,et al.  Suppression of non-small cell lung tumor development by the let-7 microRNA family , 2008, Proceedings of the National Academy of Sciences.

[38]  A. Hata,et al.  SMAD proteins control DROSHA-mediated microRNA maturation , 2008, Nature.

[39]  S. Artavanis-Tsakonas,et al.  Investigating the Genetic Circuitry of Mastermind in Drosophila, a Notch Signal Effector , 2007, Genetics.

[40]  A. Schier,et al.  Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430 , 2007, Science.

[41]  Uyen Tran,et al.  MicroRNA control of Nodal signalling , 2007, Nature.

[42]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[43]  Michael A. Beer,et al.  Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. , 2007, Molecular cell.

[44]  B. O’Malley,et al.  DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs , 2007, Nature Cell Biology.

[45]  Anindya Dutta,et al.  The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. , 2007, Genes & development.

[46]  David P. Bartel,et al.  Supporting Online Material Materials and Methods Fig. S1 Tables S1 and S2 References Database S1 Disrupting the Pairing between Let-7 and Hmga2 Enhances Oncogenic Transformation , 2022 .

[47]  S. Barolo,et al.  transcriptional control by developmental cell signaling Three habits of highly effective signaling pathways: principles of , 2007 .

[48]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[49]  L. Cassiday,et al.  Recognition of RNA by the p53 tumor suppressor protein in the yeast three-hybrid system. , 2006, RNA.

[50]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[51]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[52]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[53]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[54]  Tasuku Honjo,et al.  Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. , 2004, Genes & development.

[55]  Eric C. Lai,et al.  Notch signaling: control of cell communication and cell fate , 2004, Development.

[56]  Eric C Lai,et al.  microRNAs: Runts of the Genome Assert Themselves , 2003, Current Biology.

[57]  L. Cassiday,et al.  Having it both ways: transcription factors that bind DNA and RNA. , 2002, Nucleic acids research.

[58]  Scott Barolo,et al.  Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. , 2002, Genes & development.

[59]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[60]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[61]  M. Ewen,et al.  p53 Binds Selectively to the 5′ Untranslated Region ofcdk4, an RNA Element Necessary and Sufficient for Transforming Growth Factor β- and p53-Mediated Translational Inhibition of cdk4 , 2000, Molecular and Cellular Biology.

[62]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[63]  C Burks,et al.  The K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. , 1998, Development.

[64]  E. Lai,et al.  The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. , 1997, Development.

[65]  E. Lai,et al.  The Drosophila gene Bearded encodes a novel small protein and shares 3' UTR sequence motifs with multiple Enhancer of split complex genes. , 1997, Development.

[66]  G M Rubin,et al.  A screen for genes that function downstream of Ras1 during Drosophila eye development. , 1996, Genetics.

[67]  W. Gelbart,et al.  Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. , 1995, Genetics.

[68]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[69]  G. Rubin,et al.  Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase , 1991, Cell.

[70]  C. Klämbt,et al.  Closely related transcripts encoded by the neurogenic gene complex enhancer of split of Drosophila melanogaster. , 1989, The EMBO journal.