Thin 3D multiplication regions in plasmonically enhanced nanopillar avalanche detectors.

We demonstrate a nanopillar (NP) device structure for implementing plasmonically enhanced avalanche photodetector arrays with thin avalanche volumes (∼ 310 nm × 150 nm × 150 nm). A localized 3D electric field due to a core-shell PN junction in a NP acts as a multiplication region, while efficient light absorption takes place via surface plasmon polariton Bloch wave (SPP-BW) modes due to a self-aligned metal nanohole lattice. Avalanche gains of ∼216 at 730 nm at -12 V are obtained. We show through capacitance-voltage characterization, temperature-dependent breakdown measurements, and detailed device modeling that the avalanche region is on the order of the ionization path length, such that dead-space effects become significant. This work presents a clear path toward engineering dead space effects in thin 3D-confined multiplication regions for high performance avalanche detectors for applications in telecommunications, sensing and single photon detection.

[1]  C. Hilsum Semiconductors and Semimetals Vol 11: Solar Cells , 1976 .

[2]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[3]  Joe C. Campbell,et al.  Noise characteristics of thin multiplication region GaAs avalanche photodiodes , 1996 .

[4]  John P. R. David,et al.  Avalanche multiplication noise characteristics in thin GaAs p/sup +/-i-n/sup +/ diodes , 1998 .

[5]  M. Teich,et al.  Impact-ionization and noise characteristics of thin III-V avalanche photodiodes , 2001 .

[6]  L. Samuelson,et al.  Infrared photodetectors in heterostructure nanowires. , 2006, Nano letters.

[7]  Charles M Lieber,et al.  Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection , 2006, Nature materials.

[8]  L. Lauhon,et al.  Three-dimensional nanoscale composition mapping of semiconductor nanowires. , 2006, Nano letters.

[9]  Federico Capasso,et al.  Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. , 2006, Nano letters.

[10]  Peter W Voorhees,et al.  Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. , 2009, Nature nanotechnology.

[11]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[12]  L. Lauhon,et al.  Nonuniform Nanowire Doping Profiles Revealed by Quantitative Scanning Photocurrent Microscopy , 2009 .

[13]  F. Xia,et al.  Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects , 2010, Nature.

[14]  Yong-Jun Cho,et al.  Diameter-dependent internal gain in ohmic Ge nanowire photodetectors. , 2010, Nano letters.

[15]  Diana L. Huffaker,et al.  InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy , 2010 .

[16]  Effects of electrical contacts on the photoconductive gain of nanowire photodetectors , 2011 .

[17]  A. Scherer,et al.  Low-threshold room-temperature lasing in bottom-up photonic crystal cavities formed by patterned III-V nanopillars , 2011, 69th Device Research Conference.

[18]  Baolai Liang,et al.  Surface plasmon-enhanced nanopillar photodetectors. , 2011, Nano letters.

[19]  Michael E. Reimer,et al.  Single photon emission and detection at the nanoscale utilizing semiconductor nanowires , 2011 .

[20]  Dong Yu,et al.  Electric field dependent photocurrent decay length in single lead sulfide nanowire field effect transistors. , 2011, Nano letters.

[21]  C. Chang-Hasnain,et al.  GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate. , 2011, Nano letters.

[22]  Bahram Nabet,et al.  Picosecond response times in GaAs/AlGaAs core/shell nanowire-based photodetectors , 2011 .

[23]  Yuh-Renn Wu,et al.  Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN LEDs , 2012, IEEE Transactions on Electron Devices.

[24]  P. Senanayake,et al.  3D nanopillar optical antenna photodetectors. , 2012, Optics express.

[25]  Michael E. Reimer,et al.  Avalanche amplification of a single exciton in a semiconductor nanowire , 2012, Nature Photonics.

[26]  U. Chettiar,et al.  An invisible metal–semiconductor photodetector , 2012, Nature Photonics.