Counterexample Generation for Hybrid Automata

The last decade brought us a whole range of over-approximative algorithms for the reachability analysis of hybrid automata, a widely used modeling language for systems with combined discrete-continuous behavior. Besides theoretical results, there are also some tools available for proving safety in the continuous time domain. However, if a given set of critical states is found to be reachable, these tools do not provide counterexamples for models beyond timed automata.

[1]  Amir Pnueli,et al.  Orthogonal Polyhedra: Representation and Computation , 1999, HSCC.

[2]  Antoine Girard,et al.  Reachability of Uncertain Linear Systems Using Zonotopes , 2005, HSCC.

[3]  Xin Chen,et al.  Flow*: An Analyzer for Non-linear Hybrid Systems , 2013, CAV.

[4]  Xin Chen,et al.  Taylor Model Flowpipe Construction for Non-linear Hybrid Systems , 2012, 2012 IEEE 33rd Real-Time Systems Symposium.

[5]  Hans-Christian Hege Mathematical visualization: algorithms, applications and numerics , 1998 .

[6]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[7]  Sayan Mitra,et al.  Abstraction Refinement for Stability , 2011, 2011 IEEE/ACM Second International Conference on Cyber-Physical Systems.

[8]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[9]  Olaf Stursberg,et al.  Efficient Representation and Computation of Reachable Sets for Hybrid Systems , 2003, HSCC.

[10]  B. Krogh,et al.  Computing polyhedral approximations to flow pipes for dynamic systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[11]  Mahesh Viswanathan,et al.  Hybrid automata-based CEGAR for rectangular hybrid systems , 2013, Formal Methods Syst. Des..

[12]  Colas Le Guernic Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics. (Calcul d'Atteignabilité des Systèmes Hybrides à Partie Continue Linéaire) , 2009 .

[13]  Tiziano Villa,et al.  Ariadne: a framework for reachability analysis of hybrid automata , 2006 .

[14]  Goran Frehse PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech , 2005, HSCC.

[15]  Davide Bresolin,et al.  Computing the Evolution of Hybrid Systems using Rigorous Function Calculus , 2012, ADHS.

[16]  Eugene Asarin,et al.  The d/dt Tool for Verification of Hybrid Systems , 2002, CAV.

[17]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[18]  Xin Chen,et al.  Choice of Directions for the Approximation of Reachable Sets for Hybrid Systems , 2011, EUROCAST.

[19]  Antoine Girard,et al.  Reachability Analysis of Hybrid Systems Using Support Functions , 2009, CAV.

[20]  Antoine Girard,et al.  SpaceEx: Scalable Verification of Hybrid Systems , 2011, CAV.

[21]  Antoine Girard,et al.  Approximation Metrics for Discrete and Continuous Systems , 2006, IEEE Transactions on Automatic Control.

[22]  Wolfgang Kühn Zonotope Dynamics in Numerical Quality Control , 1997, VisMath.

[23]  P. Varaiya,et al.  Ellipsoidal Toolbox (ET) , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[24]  Pravin Varaiya,et al.  On Ellipsoidal Techniques for Reachability Analysis. Part I: External Approximations , 2002, Optim. Methods Softw..

[25]  Ian M. Mitchell,et al.  Level Set Methods for Computation in Hybrid Systems , 2000, HSCC.

[26]  Ansgar Fehnker,et al.  Benchmarks for Hybrid Systems Verification , 2004, HSCC.