A Geometric Multigrid Preconditioner for the Solution of the Helmholtz Equation in Three-Dimensional Heterogeneous Media on Massively Parallel Computers

We consider the numerical simulation of acoustic wave propagation in three-dimensional heterogeneous media as occcurring in seismic exploration. We focus on forward Helmholtz problems written in the frequency domain, since this setting is known to be particularly challenging for modern iterative methods. The geometric multigrid preconditioner proposed by Calandra et al. (Numer Linear Algebra Appl 20:663-688, 2013) is considered for the approximate solution of the Helmholtz equation at high frequencies in combination with dispersion minimizing finite difference methods. We present both a strong scalability study and a complexity analysis performed on a massively parallel distributed memory computer. Numerical results demonstrate the usefulness of the algorithm on a realistic three-dimensional application at high frequency.

[1]  Mark Hoemmen,et al.  Communication-avoiding Krylov subspace methods , 2010 .

[2]  Jianlin Xia,et al.  On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .

[3]  Cornelis W. Oosterlee,et al.  Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..

[4]  Christiaan C. Stolk,et al.  A Multigrid Method for the Helmholtz Equation with Optimized Coarse Grid Corrections , 2013, SIAM J. Sci. Comput..

[5]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[6]  A. Brandt,et al.  WAVE-RAY MULTIGRID METHOD FOR STANDING WAVE EQUATIONS , 1997 .

[7]  Henri Calandra,et al.  Two-Level preconditioned Krylov subspace methods for the solution of three-dimensional heterogeneous Helmholtz problems in seismics , 2012 .

[8]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[9]  X. Pinel,et al.  A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics , 2010 .

[10]  Tingting Wu,et al.  A dispersion minimizing finite difference scheme and preconditioned solver for the 3D Helmholtz equation , 2012, J. Comput. Phys..

[11]  Jean-Yves L'Excellent,et al.  Improving Multifrontal Methods by Means of Block Low-Rank Representations , 2015, SIAM J. Sci. Comput..

[12]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[13]  Yogi A. Erlangga,et al.  A robust and efficient iterative method for the numerical solution of the Helmholtz equation , 2005 .

[14]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[15]  Christiaan C. Stolk,et al.  A rapidly converging domain decomposition method for the Helmholtz equation , 2012, J. Comput. Phys..

[16]  Marcus J. Grote,et al.  Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..

[17]  Laurent Demanet,et al.  The method of polarized traces for the 2D Helmholtz equation , 2014, J. Comput. Phys..

[18]  Wim Vanroose,et al.  A polynomial multigrid smoother for the iterative solution of the heterogeneous Helmholtz problem , 2010, ArXiv.

[19]  Henri Calandra,et al.  Flexible Variants of Block Restarted GMRES Methods with Application to Geophysics , 2012, SIAM J. Sci. Comput..

[20]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[21]  E. Turkel,et al.  Operated by Universities Space Research AssociationAccurate Finite Difference Methods for Time-harmonic Wave Propagation* , 1994 .

[22]  Wim Vanroose,et al.  On the indefinite Helmholtz equation: Complex stretched absorbing boundary layers, iterative analysis, and preconditioning , 2009, J. Comput. Phys..

[23]  Wolfgang Hackbusch,et al.  Multigrid methods : proceeding of the conference held at Köln-Porz, November 23-27, 1981 , 1982 .

[24]  Cornelis Vuik,et al.  On the convergence of shifted Laplace preconditioner combined with multilevel deflation , 2013, Numer. Linear Algebra Appl..

[25]  Yogi A. Erlangga,et al.  Advances in Iterative Methods and Preconditioners for the Helmholtz Equation , 2008 .

[26]  Lexing Ying,et al.  Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..

[27]  Cornelis Vuik,et al.  Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian , 2007, SIAM J. Sci. Comput..

[28]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[29]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[30]  A. Bayliss,et al.  An Iterative method for the Helmholtz equation , 1983 .

[31]  J. Bérenger Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .

[32]  Charbel Farhat,et al.  A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems , 2000, Numerische Mathematik.

[33]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[34]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[35]  Martin J. Gander,et al.  Why it is Difficult to Solve Helmholtz Problems with Classical Iterative Methods , 2012 .

[36]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[37]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[38]  Henri Calandra,et al.  A Modified Block Flexible GMRES Method with Deflation at Each Iteration for the Solution of Non-Hermitian Linear Systems with Multiple Right-Hand Sides , 2013, SIAM J. Sci. Comput..

[39]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[40]  Cornelis Vuik,et al.  On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .

[41]  Martin J. Gander,et al.  Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? , 2015, Numerische Mathematik.

[42]  Cornelis W. Oosterlee,et al.  A multigrid‐based shifted Laplacian preconditioner for a fourth‐order Helmholtz discretization , 2009, Numer. Linear Algebra Appl..

[43]  Lexing Ying,et al.  A Parallel Sweeping Preconditioner for Heterogeneous 3D Helmholtz Equations , 2012, SIAM J. Sci. Comput..

[44]  D. O’Leary,et al.  Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering , 2005 .

[45]  S. Operto,et al.  3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study , 2007 .

[46]  Valeria Simoncini,et al.  Flexible Inner-Outer Krylov Subspace Methods , 2002, SIAM J. Numer. Anal..

[47]  Jean-Yves L'Excellent,et al.  FWT2D: A massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data - Part 2: Numerical examples and scalability analysis , 2009, Computational Geosciences.

[48]  Jianlin Xia,et al.  Acoustic inverse scattering via Helmholtz operator factorization and optimization , 2010, J. Comput. Phys..

[49]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[50]  Cornelis Vuik,et al.  A parallel multigrid-based preconditioner for the 3D heterogeneous high-frequency Helmholtz equation , 2007, J. Comput. Phys..

[51]  Henri Calandra,et al.  An improved two‐grid preconditioner for the solution of three‐dimensional Helmholtz problems in heterogeneous media , 2013, Numer. Linear Algebra Appl..

[52]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[53]  Henri Calandra,et al.  A parallel evolution strategy for an earth imaging problem in geophysics , 2016 .

[54]  Semyon Tsynkov,et al.  Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number , 2013, J. Comput. Phys..

[55]  Qing Huo Liu,et al.  Higher-Order Numerical Methods for Transient Wave Equations , 2003 .