On Adaptive DLOGTIME and POLYLOGTIME Reductions

We investigate properties of the relativized NC and AC hierarchies in their DLOGTIME-, respectively, ALOGTIME-uniform setting and show that these hierarchies can be characterized in terms of adaptive reducibility in deterministic (poly)logarithmic time, i.e. in time O(log n)i for i≥0. Using this characterization, we substantially generalize various previous results concerning the structure of the NC and AC hierarchies.

[1]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[2]  Samuel R. Buss,et al.  An Optimal Parallel Algorithm for Formula Evaluation , 1992, SIAM J. Comput..

[3]  Christopher B. Wilson On the Decomposability of NC and AC , 1990, SIAM J. Comput..

[4]  R. Ladner The circuit value problem is log space complete for P , 1975, SIGA.

[5]  Samuel R. Buss,et al.  The Boolean formula value problem is in ALOGTIME , 1987, STOC.

[6]  J. L. Balcazar Adaptive logspace and depth-bounded reducibilities , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[7]  Christopher B. Wilson Decomposing NC and AC , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[8]  Ivan Hal Sudborough,et al.  On the Tape Complexity of Deterministic Context-Free Languages , 1978, JACM.

[9]  Jacobo Torán,et al.  Computing Functions with Parallel Queries to NP , 1995, Theor. Comput. Sci..

[10]  Carme Àlvarez,et al.  On Adaptive Dlogtime and Polylogtime Reductions (Extended Abstract) , 1994, STACS.

[11]  Michael Sipser,et al.  Borel sets and circuit complexity , 1983, STOC.

[12]  Carme Álvarez Faura Parallel time and sequential reducibilities , 1994 .

[13]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[14]  Nicholas Pippenger,et al.  On simultaneous resource bounds , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[15]  Carlos Seara,et al.  Characterizations of Some Complexity Classes Between Theta^p_2 and Delta^p_2 , 1992, STACS.

[16]  Carme Àlvarez,et al.  A Very Hard log-Space Counting Class , 1993, Theor. Comput. Sci..

[17]  Uzi Vishkin,et al.  Constant Depth Reducibility , 1984, SIAM J. Comput..

[18]  Neil Immerman,et al.  On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..

[19]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[20]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[21]  Allan Borodin,et al.  Two Applications of Inductive Counting for Complementation Problems , 1989, SIAM J. Comput..

[22]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[23]  José L. Balcázar,et al.  The complexity of algorithmic problems on succinct instances , 1992 .