Epidemic and Non-Epidemic Hot Spots of Malaria Transmission Occur in Indigenous Comarcas of Panama

From 2002–2005, Panama experienced a malaria epidemic that has been associated with El Niño Southern Oscillation weather patterns, decreased funding for malaria control, and landscape modification. Case numbers quickly decreased afterward, and Panama is now in the pre-elimination stage of malaria eradication. To achieve this new goal, the characterization of epidemiological risk factors, foci of transmission, and important anopheline vectors is needed. Of the 24,681 reported cases in these analyses (2000–2014), ~62% occurred in epidemic years and ~44% in indigenous comarcas (5.9% of Panama’s population). Sub-analyses comparing overall numbers of cases in epidemic and non-epidemic years identified females, comarcas and some 5-year age categories as those disproportionately affected by malaria during epidemic years. Annual parasites indices (APIs; number of cases per 1,000 persons) for Plasmodium vivax were higher in comarcas compared to provinces for all study years, though P. falciparum APIs were only higher in comarcas during epidemic years. Interestingly, two comarcas report increasing numbers of cases annually, despite national annual decreases. Inclusion of these comarcas within identified foci of malaria transmission confirmed their roles in continued transmission. Comparison of species distribution models for two important anophelines with Plasmodium case distribution suggest An. albimanus is the primary malaria vector in Panama, confirmed by identification of nine P. vivax-infected specimen pools. Future malaria eradication strategies in Panama should focus on indigenous comarcas and include both active surveillance for cases and comprehensive anopheline vector surveys.

[1]  J. Coura,et al.  A new challenge for malaria control in Brazil: asymptomatic Plasmodium infection--a review. , 2006, Memorias do Instituto Oswaldo Cruz.

[2]  R. Snow,et al.  The spatial-temporal clustering of Plasmodium falciparum infection over eleven years in Gezira State, The Sudan , 2010, Malaria Journal.

[3]  Burton H. Singer,et al.  Malaria risk on the Amazon frontier , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. DaMatta,et al.  Hematological changes of chickens experimentally infected with Plasmodium (Bennettinia) juxtanucleare. , 2009, Veterinary parasitology.

[5]  John M. Marshall,et al.  Key traveller groups of relevance to spatial malaria transmission: a survey of movement patterns in four sub-Saharan African countries , 2016, Malaria Journal.

[6]  J. Kazura,et al.  High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands , 2015, PLoS neglected tropical diseases.

[7]  Hsiao-Han Chang,et al.  Clonal outbreak of Plasmodium falciparum infection in eastern Panama. , 2014, The Journal of infectious diseases.

[8]  Determinants of low socio-economic status and risk of Plasmodium vivax malaria infection in Panama (2009–2012): a case–control study , 2015, Malaria Journal.

[9]  Kevin Marsh,et al.  Malaria hotspots defined by clinical malaria, asymptomatic carriage, PCR and vector numbers in a low transmission area on the Kenyan Coast , 2016, Malaria Journal.

[10]  Miroslav Dudík,et al.  Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation , 2008 .

[11]  S. Manguin Anopheles mosquitoes : New insights into malaria vectors , 2013 .

[12]  M. T. Marrelli,et al.  Asymptomatic Carriers of Plasmodium spp. as Infection Source for Malaria Vector Mosquitoes in the Brazilian Amazon , 2005, Journal of medical entomology.

[13]  L. F. Chaves,et al.  Characterization of a recent malaria outbreak in the autonomous indigenous region of Guna Yala, Panama , 2015, Malaria Journal.

[14]  N. Burkett-Cadena,et al.  Resting Environments of Some Costa Rican Mosquitoes , 2013, Journal of vector ecology : journal of the Society for Vector Ecology.

[15]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[16]  K. Knight,et al.  A catalog of the mosquitoes of the world (Diptera : Culicidae) , 1977 .

[17]  R. Wilkerson,et al.  Malaria vectors in South America: current and future scenarios , 2015, Parasites & Vectors.

[18]  S. Luckhart,et al.  Species composition and natural infectivity of anthropophilic Anopheles (Diptera: Culicidae) in the states of Córdoba and Antioquia, Northwestern Colombia. , 2009, Memorias do Instituto Oswaldo Cruz.

[19]  J. Grieco,et al.  A Comparison Of Two Commercial Mosquito Traps for the Capture Of Malaria Vectors In Northern Belize, Central America1 , 2014, Journal of the American Mosquito Control Association.

[20]  A. Ulloa,et al.  HOST SELECTION AND GONOTROPHIC CYCLE LENGTH OF ANOPHELES PUNCTIMACULA IN SOUTHERN MEXICO , 2006, Journal of the American Mosquito Control Association.

[21]  M. Kulldorff A spatial scan statistic , 1997 .

[22]  C. Guerra,et al.  Malaria in selected non-Amazonian countries of Latin America. , 2012, Acta tropica.

[23]  E. P. Camargo,et al.  High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations. , 2002, The American journal of tropical medicine and hygiene.

[24]  Aniset Kamanga,et al.  A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province, Zambia , 2010, Malaria Journal.

[25]  D. Strickman,et al.  Illustrated key to the female anopheline mosquitoes of Central America and Mexico. , 1990, Journal of the American Mosquito Control Association.

[26]  R. Lourenço-de-Oliveira,et al.  Culex saltanensis Dyar, 1928--natural vector of Plasmodium juxtanucleare in Rio de Janeiro, Brazil. , 1991, Memorias do Instituto Oswaldo Cruz.

[27]  A. Getis The Analysis of Spatial Association by Use of Distance Statistics , 2010 .

[28]  F. F. Hunter,et al.  New highland distribution records of multiple Anopheles species in the Ecuadorian Andes , 2011, Malaria Journal.

[29]  Jason L. Brown SDMtoolbox: a python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses , 2014 .

[30]  C. Caldwell,et al.  Estimating suitable environments for invasive plant species across large landscapes: a remote sensing strategy using Landsat 7 ETM+. , 2013 .

[31]  C. Drakeley,et al.  Serological evidence of vector and parasite exposure in Southern Ghana: the dynamics of malaria transmission intensity , 2015, Parasites & Vectors.

[32]  J. Ord,et al.  Local Spatial Autocorrelation Statistics: Distributional Issues and an Application , 2010 .

[33]  O. Doumbo,et al.  The Impact of Hotspot-Targeted Interventions on Malaria Transmission in Rachuonyo South District in the Western Kenyan Highlands: A Cluster-Randomized Controlled Trial , 2016, PLoS medicine.

[34]  M. Correa,et al.  Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation. , 2014, Acta tropica.

[35]  M. Póvoa,et al.  Phylogeography, Vectors and Transmission in Latin America , 2013 .

[36]  J. Arredondo‐Jimenez,et al.  Cyanobacteria Associated with Anopheles albimanus (Diptera: Culicidae) Larval Habitats in Southern Mexico , 2002, Journal of medical entomology.

[37]  J. Hernández-Ávila,et al.  Bacteria in Midguts of Field-Collected Anopheles albimanus Block Plasmodium vivax Sporogonic Development , 2003, Journal of medical entomology.

[38]  M. White,et al.  Selecting thresholds for the prediction of species occurrence with presence‐only data , 2013 .

[39]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[40]  T. Hankeln,et al.  Anthropophilic Anopheles species composition and malaria in Tierradentro, Córdoba, Colombia , 2014, Memorias do Instituto Oswaldo Cruz.

[41]  Andrew J. Tatem,et al.  Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data , 2016, PLoS Comput. Biol..

[42]  R. Zimmerman Ecology of malaria vectors in the Americas and future direction. , 1992, Memorias do Instituto Oswaldo Cruz.

[43]  T. McCutchan,et al.  PLASMODIUM JUXTANUCLEARE ASSOCIATED WITH MORTALITY IN BLACK-FOOTED PENGUINS (SPHENISCUS DEMERSUS) ADMITTED TO A REHABILITATION CENTER , 2003, Journal of zoo and wildlife medicine : official publication of the American Association of Zoo Veterinarians.

[44]  R. Snow,et al.  Identifying Residual Foci of Plasmodium falciparum Infections for Malaria Elimination: The Urban Context of Khartoum, Sudan , 2011, PloS one.

[45]  M Kulldorff,et al.  Spatial disease clusters: detection and inference. , 1995, Statistics in medicine.

[46]  Human biting activity, spatial–temporal distribution and malaria vector role of Anopheles calderoni in the southwest of Colombia , 2015, Malaria Journal.

[47]  W. H. Cheong,et al.  Biology of the Malaysian strain of Plasmodium juxtanucleare Versiani and Gomes, 1941. II. The sporogonic stages in Culex (Culex) sitiens Wiedmann. , 1966, The Journal of parasitology.

[48]  Pedro L. Alonso,et al.  Some Lessons for the Future from the Global Malaria Eradication Programme (1955–1969) , 2011, PLoS medicine.

[49]  J. Grieco,et al.  COMPARATIVE SUSCEPTIBILITY OF THREE SPECIES OF ANOPHELES FROM BELIZE, CENTRAL AMERICA, TO PLASMODIUM FALCIPARUM (NF-54) , 2005, Journal of the American Mosquito Control Association.

[50]  L. F. Chaves,et al.  When climate change couples social neglect: malaria dynamics in Panamá , 2014, Emerging Microbes & Infections.

[51]  E. Rejmánková,et al.  Biting patterns and seasonal densities of Anopheles mosquitoes in the Cayo District, Belize, Central America with emphasis on Anopheles darlingi , 2006, Journal of vector ecology : journal of the Society for Vector Ecology.

[52]  E. Bermingham,et al.  Anopheles darlingi (Diptera: Culicidae) in Panama. , 2009, The American journal of tropical medicine and hygiene.

[53]  J. Conn,et al.  Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies. , 2012, Acta tropica.

[54]  Aniset Kamanga,et al.  Rural health centres, communities and malaria case detection in Zambia using mobile telephones: a means to detect potential reservoirs of infection in unstable transmission conditions , 2010, Malaria Journal.

[55]  L. Okell,et al.  Asymptomatic malaria infections: detectability, transmissibility and public health relevance , 2014, Nature Reviews Microbiology.

[56]  W. Tadei,et al.  Amazonian malaria vector anopheline relationships interpreted from ITS2 rDNA sequences , 2005, Medical and veterinary entomology.

[57]  W. L. Paraense Infecção experimental do Culex quinquefasciatus pelo Plasmodium juxtanucleare , 1944 .

[58]  J. Conn,et al.  A sensitive, specific and reproducible real-time polymerase chain reaction method for detection of Plasmodium vivax and Plasmodium falciparum infection in field-collected anophelines , 2015, Memorias do Instituto Oswaldo Cruz.

[59]  Anand P. Patil,et al.  Bayesian geostatistics in health cartography: the perspective of malaria. , 2011, Trends in parasitology.

[60]  S. Luckhart,et al.  Abundance, behavior and entomological inoculation rates of anthropophilic anophelines from a primary Colombian malaria endemic area , 2013, Parasites & Vectors.

[61]  E. Bermingham,et al.  Species Composition and Distribution of AdultAnopheles(Diptera: Culicidae) in Panama , 2008 .

[62]  S. Luckhart,et al.  Evaluation of a PCR-RFLP-ITS2 assay for discrimination of Anopheles species in northern and western Colombia. , 2011, Acta tropica.

[63]  T. McCutchan,et al.  MOLECULAR PHYLOGENETIC ANALYSIS OF THE AVIAN MALARIAL PARASITE PLASMODIUM (NOVYELLA) JUXTANUCLEARE , 2002, The Journal of parasitology.

[64]  E. Rejmánková,et al.  A MARK–RELEASE–RECAPTURE STUDY TO DEFINE THE FLIGHT BEHAVIORS OF ANOPHELES VESTITIPENNIS AND ANOPHELES ALBIMANUS IN BELIZE, CENTRAL AMERICA1 , 2007, Journal of the American Mosquito Control Association.

[65]  Boris Schröder,et al.  The importance of correcting for sampling bias in MaxEnt species distribution models , 2013 .

[66]  E. Bermingham,et al.  Species Composition and Distribution of Adult Anopheles (Diptera: Culicidae) in Panama , 2008, Journal of medical entomology.

[67]  Caroline W. Kabaria,et al.  The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis , 2010, Parasites & Vectors.

[68]  S. Nie,et al.  Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004–2011 , 2015, Malaria Journal.

[69]  J. Arredondo‐Jimenez,et al.  Behaviour of Anopheles albimanus in relation to pyrethroid‐treated bednets , 1997, Medical and veterinary entomology.

[70]  R. Wilkerson,et al.  DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors , 2012, Parasites & Vectors.

[71]  E. Rejmánková,et al.  Habitat suitability for three species of Anopheles mosquitoes: Larval growth and survival in reciprocal placement experiments , 2007, Journal of vector ecology : journal of the Society for Vector Ecology.

[72]  E. Bermingham,et al.  Novel genetic diversity within Anopheles punctimacula s.l.: phylogenetic discrepancy between the Barcode cytochrome c oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2). , 2013, Acta tropica.

[73]  S. Hay,et al.  The global distribution of clinical episodes of Plasmodium falciparum malaria , 2005, Nature.

[74]  B. Alexander,et al.  Man-biting activity of Anopheles (Nyssorhynchus) albimanus and An. (Kerteszia) neivai (Diptera: Culicidae) in the Pacific lowlands of Colombia. , 1996, Memorias do Instituto Oswaldo Cruz.

[75]  Nancy Fullman,et al.  The changing epidemiology of malaria elimination: new strategies for new challenges , 2013, The Lancet.

[76]  R. Nussenzweig,et al.  Potential vectors of malaria and their different susceptibility to Plasmodium falciparum and Plasmodium vivax in northern Brazil identified by immunoassay. , 1986, The American journal of tropical medicine and hygiene.