Controlled Catalytic Energy Release of the Norbornadiene/Quadricyclane Molecular Solar Thermal Energy Storage System on Ni(111)

We have investigated the surface chemistry of the molecular solar thermal energy storage system of the valence isomer pair norbornadiene (NBD)/quadricyclane (QC) on Ni(111). Our multimethod approach includes UV-photoelectron spectroscopy (UPS), high-resolution X-ray photoelectron spectroscopy (XPS), near edge X-ray absorption fine structure (NEXAFS), and density functional theory (DFT) calculations. The NBD/QC system holds the potential to be utilized in future energy storage technologies due to its comparably high gravimetric energy storage density, and the release of energy in a catalytic and sustainable cycle. UPS shows molecular adsorption of both compounds at 120 K, as is also predicted by DFT. NEXAFS and DFT suggest an adsorption geometry of NBD with both double bonds binding to the surface (η2:η2). For QC, no preference is found, and both the η2:η2 and the η2:η1 adsorption geometry are stable. The conversion of QC to NBD is thermally activated. From UPS, a reaction temperature of ∼175 K is determin...

[1]  P. Erhart,et al.  Liquid Norbornadiene Photoswitches for Solar Energy Storage , 2018 .

[2]  P. Erhart,et al.  Molecular solar thermal energy storage in photoswitch oligomers increases energy densities and storage times , 2018, Nature Communications.

[3]  K. Börjesson,et al.  Effect of Ring Strain on the Charge Transport of a Robust Norbornadiene–Quadricyclane-Based Molecular Photoswitch , 2017, The journal of physical chemistry. C, Nanomaterials and interfaces.

[4]  C. Papp,et al.  Catalytically Triggered Energy Release from Strained Organic Molecules: The Surface Chemistry of Quadricyclane and Norbornadiene on Pt(111). , 2017, Chemistry.

[5]  G. Cao,et al.  Exploiting High‐Performance Anode through Tuning the Character of Chemical Bonds for Li‐Ion Batteries and Capacitors , 2017 .

[6]  P. Erhart,et al.  Low Molecular Weight Norbornadiene Derivatives for Molecular Solar‐Thermal Energy Storage , 2016, Chemistry.

[7]  C. Papp,et al.  Energy Storage in Strained Organic Molecules: (Spectro)Electrochemical Characterization of Norbornadiene and Quadricyclane. , 2016, ChemSusChem.

[8]  Na Xu,et al.  Stationary Full Li-Ion Batteries with Interlayer-Expanded V6O13 Cathodes and Lithiated Graphite Anodes , 2016 .

[9]  P. Hyldgaard,et al.  Comparative Ab-Initio Study of Substituted Norbornadiene-Quadricyclane Compounds for Solar Thermal Storage , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[10]  T. Xu,et al.  Surface Reactions of Dicyclohexylmethane on Pt(111) , 2015 .

[11]  K. Moth‐Poulsen,et al.  Designing photoswitches for molecular solar thermal energy storage , 2015 .

[12]  J. Grossman,et al.  Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. , 2014, Nature chemistry.

[13]  T. Moore,et al.  Evolution of reaction center mimics to systems capable of generating solar fuel , 2014, Photosynthesis Research.

[14]  C. Papp,et al.  In situ high-resolution X-ray photoelectron spectroscopy – Fundamental insights in surface reactions , 2013 .

[15]  Ivana Antol,et al.  Photodeactivation paths in norbornadiene , 2013, J. Comput. Chem..

[16]  K. Börjesson,et al.  Efficiency Limit of Molecular Solar Thermal Energy Collecting Devices , 2013 .

[17]  J. Grossman,et al.  Photoswitchable Molecular Rings for Solar-Thermal Energy Storage. , 2013, The journal of physical chemistry letters.

[18]  J. Grossman,et al.  Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion. , 2013, The Journal of chemical physics.

[19]  A. Majumdar,et al.  Molecular solar thermal (MOST) energy storage and release system , 2012 .

[20]  Son C. Nguyen,et al.  X-ray transient absorption and picosecond IR spectroscopy of fulvalene(tetracarbonyl)diruthenium on photoexcitation. , 2012, Angewandte Chemie.

[21]  R. Boulatov,et al.  Chemical solutions for the closed-cycle storage of solar energy , 2011 .

[22]  J. Grossman,et al.  Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. , 2011, Nano letters.

[23]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[24]  Yosuke Kanai,et al.  Mechanism of thermal reversal of the (fulvalene)tetracarbonyldiruthenium photoisomerization: toward molecular solar-thermal energy storage. , 2010, Angewandte Chemie.

[25]  Li Wang,et al.  Photoisomerization of Norbornadiene to Quadricyclane Using Transition Metal Doped TiO2 , 2010 .

[26]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[27]  Li Wang,et al.  Zn-and La-modified TiO2 photocatalysts for the isomerization of norbornadiene to quadricyclane , 2008 .

[28]  Shayu Li,et al.  Valence isomerization in dendrimers by photo-induced electron transfer and energy transfer from the dendrimer backbone to the core , 2007 .

[29]  C. Papp,et al.  A detailed analysis of vibrational excitations in x-ray photoelectron spectra of adsorbed small hydrocarbons. , 2006, The Journal of chemical physics.

[30]  Paul K. Chu,et al.  Characterization of amorphous and nanocrystalline carbon films , 2006 .

[31]  R. Denecke Surface chemistry studied by in situ X-ray photoelectron spectroscopy , 2005 .

[32]  M. Martins,et al.  The C 1s NEXAFS spectrum of benzene below threshold: Rydberg or valence character of the unoccupied σ-type orbitals , 2004 .

[33]  C. Linsmeier,et al.  Formation of endothermic carbides on iron and nickel , 2004 .

[34]  H. Estrade-szwarckopf XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak , 2004 .

[35]  K. Lin,et al.  Fourier Transform Near-Infrared Absorption Spectroscopic Study of Catalytic Isomerization of Quadricyclane to Norbornadiene by Copper(II) and Tin(II) Salts , 2002 .

[36]  I. Gould,et al.  Bond-Coupled Electron Transfer Reactions: Photoisomerization of Norbornadiene to Quadricyclane , 1999 .

[37]  A. Matzger,et al.  Photochemistry of (Fulvalene)tetracarbonyldiruthenium and Its Derivatives: Efficient Light Energy Storage Devices , 1997 .

[38]  H. Steinrück Angle-resolved photoemission studies of adsorbed hydrocarbons , 1996 .

[39]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[40]  R. Nuzzo,et al.  Nonbornadiene on Pt(111) is not bound as an n2: n2 diene: characterization of an unexpected n2:n1 bonding mode involving an agostic Pt···H--C interaction , 1995 .

[41]  D. R. Huntley,et al.  Adsorption and thermal decomposition of benzene on nickel(110) studied by chemical, spectroscopic, and computational methods , 1992 .

[42]  S. Aminpirooz,et al.  HIGH RESOLUTION NEXAFS STUDIES OF AROMATIC MOLECULES ADSORBED AND CONDENSED ON NI(111) , 1991 .

[43]  K. J. Maynard,et al.  Synthesis of benzene from methane over a nickel(111) catalyst , 1989 .

[44]  H. Steinrück,et al.  The adsorption of benzene mono- and multilayers on Ni(111) studied by TPD and LEED , 1989 .

[45]  H. Steinrück,et al.  The electronic structure and molecular symmetry of pure benzene and benzene coadsorbed with CO on Ni(111) , 1989 .

[46]  K. Maruyama,et al.  Development of a solar energy storage process. Photoisomerization of a norbornadiene derivative to a quadricyclane derivative in an aqueous alkaline solution , 1985 .

[47]  C. Economou,et al.  Norbornadiene-quadricyclane system in the photochemical conversion and storage of solar energy , 1983 .

[48]  K. Vollhardt,et al.  Synthesis, structure, and photochemistry of tetracarbonyl(fulvalene)diruthenium. Thermally reversible photoisomerization involving carbon-carbon bond activation at a dimetal center , 1983 .

[49]  C. Friend,et al.  CHEMISTRY OF CYCLIC OLEFINS AND POLYENES ON NICKEL AND PLATINUM SURFACES , 1982 .

[50]  K. Maruyama,et al.  Exploitation of solar energy storage systems. Valence isomerization between norbornadiene and quadricyclane derivatives , 1981 .

[51]  H. Ibach,et al.  Decomposition of hydrocarbons on flat and stepped Ni(111) surfaces , 1979 .

[52]  C. Kutal,et al.  CATALYTIC ROLE OF COPPER(I) IN THE PHOTOASSISTED VALENCE ISOMERIZATION OF NORBORNADIENE , 1977 .

[53]  W. G. Dauben,et al.  Photochemical transformations—VIII: The isomerization of Δ2,5-bicyclo[2.2.1]heptadiene to quadricyclo[2.2.1.02,6·03,5]heptane (quadricyclene)☆☆☆★ , 1961 .