A new singlet ab initio potential energy surface for studying vibrational relaxation in O2(v)+O2 collisions

[1]  J. L. Llanio-Trujillo,et al.  On triplet tetraoxygen: ab initio study along minimum energy path and global modelling , 2002 .

[2]  G. D. Billing,et al.  Vibrational energy transfer in molecular oxygen collisions , 2002 .

[3]  R. Hernández-Lamoneda,et al.  Reactivity and electronic states of O4 along minimum energy paths , 2000 .

[4]  R. Hernández-Lamoneda,et al.  Spin–orbit coupling in highly vibrationally excited O2(v) and O2(v=0)–O2(v) , 2000 .

[5]  Fernando Pirani,et al.  Molecular Beam Scattering of Aligned Oxygen Molecules. The Nature of the Bond in the O2−O2 Dimer , 1999 .

[6]  A. Wodtke,et al.  Electronic nonadiabaticity in highly vibrationally excited O2(X 3Σg−): Spin-orbit coupling between X 3Σg− and b 1Σg+ , 1999 .

[7]  D. Peterka,et al.  Unraveling the mysteries of metastable O4 , 1999 .

[8]  V. Aquilanti,et al.  Quantum interference scattering of aligned molecules: Bonding in O-4 and role of spin coupling , 1999 .

[9]  Marta I. Hernández,et al.  Jump in depletion rates of highly excited O2: reaction or enhanced vibrational relaxation? , 1998 .

[10]  D. Clary,et al.  Reactive scattering of highly vibrationally excited oxygen molecules: Ozone formation? , 1998 .

[11]  B. Bussery-Honvault,et al.  Comparative studies of the lowest singlet states of (O2)2 including ab initio calculations of the four excited states dissociating into O2(1Δg)+O2(1Δg) , 1998 .

[12]  N. Balakrishnan,et al.  Multiquantum vibrational transitions in O 2( v=25)+O 2( v=0) collisions , 1998 .

[13]  F. Gadéa,et al.  Nonradiative lifetimes for LiH in the A state using adiabatic and diabatic schemes , 1997 .

[14]  Marta I. Hernández,et al.  Theoretical evidence for the reaction O2(ν) + O2(ν = 0) → O3(X1A1) + O(3P) , 1997 .

[15]  A. Varandas,et al.  On the O2(ν′) + O2(ν′) atmospheric reaction: a quasiclassical trajectory study , 1997 .

[16]  N. Balakrishnan,et al.  Variational transition state rate constants for the reaction O(3P) + O3(1A1) → 2O2(X3Σg−) , 1995 .

[17]  D. Clary,et al.  State‐selected vibrational relaxation rates for highly vibrationally excited oxygen molecules , 1995 .

[18]  A. Wodtke,et al.  State-to-state rate constants for relaxation of highly vibrationally excited O2 and implications for its atmospheric fate , 1995 .

[19]  T. Helgaker,et al.  Frequency‐dependent polarizabilities of O2 and van der Waals coefficients of dimers containing O2 , 1994 .

[20]  J. Price,et al.  Vibrational-state-specific self-relaxation rate constant. Measurements of highly vibrationally excited O2(ν = 19–28) , 1993 .

[21]  P. Wormer,et al.  A van der Waals intermolecular potential for (O2)2 , 1993 .

[22]  G. D. Billing,et al.  Vibrational relaxation of oxygen. State to state rate constants , 1992 .

[23]  H. Schaefer,et al.  Is there a transition state for the unimolecular dissociation of cyclotetraoxygen (O4) , 1992 .

[24]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[25]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[26]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[27]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[28]  P. Wormer,et al.  (Heisenberg) exchange and electrostatic interactions between O2 molecules: An ab initio study , 1984 .

[29]  M. Child,et al.  Molecular Collision Theory , 1976 .

[30]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .