Recent Developments in Interior-Point Methods

The modern era of interior-point methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadratic programming, semidefinite programming, and nonconvex and nonlinear problems, have reached varying levels of maturity. Interior-point methodology has been used as part of the solution strategy in many other optimization contexts as well, including analytic center methods and column-generation algorithms for large linear programs. We review some core developments in the area.

[1]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[2]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[3]  Clóvis C. Gonzaga,et al.  Large Step Path-Following Methods for Linear Programming, Part I: Barrier Function Method , 1991, SIAM J. Optim..

[4]  John E. Mitchell,et al.  Restarting after Branching in the SDP Approach to MAX-CUT and Similar Combinatorial Optimization Problems , 2001, J. Comb. Optim..

[5]  Hitoshi Takehara An interior point algorithm for large scale portfolio optimization , 1993, Ann. Oper. Res..

[6]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[7]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[8]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[9]  P. Pardalos,et al.  Interior Point Methods for Combinatorial Optimization , 1998 .

[10]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[11]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[12]  L. Faybusovich Linear systems in Jordan algebras and primal-dual interior-point algorithms , 1997 .

[13]  Stephen J. Wright,et al.  Local convergence of interior-point algorithms for degenerate monotone LCP , 1994, Comput. Optim. Appl..

[14]  John E. Mitchell,et al.  Computational Experience with an Interior Point Cutting Plane Algorithm , 1999, SIAM J. Optim..

[15]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[16]  Anders Forsgren,et al.  Primal-Dual Interior Methods for Nonconvex Nonlinear Programming , 1998, SIAM J. Optim..

[17]  Nicholas I. M. Gould,et al.  SQP Methods for Large-Scale Nonlinear Programming , 1999, System Modelling and Optimization.

[18]  Michael L. Overton,et al.  A Primal-dual Interior Method for Nonconvex Nonlinear Programming , 1998 .

[19]  Stephen J. Wright Modified Cholesky Factorizations in Interior-Point Algorithms for Linear Programming , 1999, SIAM J. Optim..

[20]  Anthony V. Fiacco,et al.  Nonlinear programming;: Sequential unconstrained minimization techniques , 1968 .

[21]  Philip M. Morse Statistics and Operations Research , 1956 .

[22]  Sanjay Mehrotra,et al.  Asymptotic convergence in a generalized predictor-corrector method , 1996, Math. Program..

[23]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[24]  Knud D. Andersen A modified Schur-complement method for handling dense columns in interior-point methods for linear programming , 1996, TOMS.

[25]  M. Todd A study of search directions in primal-dual interior-point methods for semidefinite programming , 1999 .

[26]  J. Birge,et al.  Computing block-angular Karmarkar projections with applications to stochastic programming , 1988 .

[27]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[28]  Jacek Gondzio,et al.  Multiple centrality corrections in a primal-dual method for linear programming , 1996, Comput. Optim. Appl..

[29]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[30]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.

[31]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[32]  Stephen J. Wright,et al.  Application of Interior-Point Methods to Model Predictive Control , 1998 .

[33]  Stephen J. Wright,et al.  Superlinear Convergence of an Interior-Point Method Despite Dependent Constraints , 2000, Math. Oper. Res..

[34]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[35]  Madhu V. Nayakkankuppam,et al.  Extending Mehrotra and Gondzio higher order methods to mixed semidefinite-quadratic-linear programming , 1999 .

[36]  Jorge Nocedal,et al.  An Interior Point Algorithm for Large-Scale Nonlinear Programming , 1999, SIAM J. Optim..

[37]  Stephen J. Wright Interior point methods for optimal control of discrete time systems , 1993 .