Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity.

Placing an ensemble of 10;{6} ultracold atoms in the near field of a superconducting coplanar waveguide resonator with a quality factor Q approximately 10;{6}, one can achieve strong coupling between a single microwave photon in the coplanar waveguide resonator and a collective hyperfine qubit state in the ensemble with g_{eff}/2pi approximately 40 kHz larger than the cavity linewidth of kappa/2pi approximately 7 kHz. Integrated on an atomchip, such a system constitutes a hybrid quantum device, which also can be used to interconnect solid-state and atomic qubits, study and control atomic motion via the microwave field, observe microwave superradiance, build an integrated micromaser, or even cool the resonator field via the atoms.

[1]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[2]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[3]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[4]  Elliott H. Lieb,et al.  On the superradiant phase transition for molecules in a quantized radiation field: the dicke maser model , 1973 .

[5]  Tilo Steinmetz,et al.  Coherence in microchip traps. , 2004, Physical review letters.

[6]  A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. , 2008, Physical review letters.

[7]  D. Hunger,et al.  Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip , 2007, Nature.

[8]  Tobias Donner,et al.  Cavity QED with a Bose–Einstein condensate , 2007, Nature.

[9]  H. Ritsch,et al.  Quantum motion of laser-driven atoms in a cavity field , 2004 .

[10]  G. Kurizki,et al.  Reversible state transfer between superconducting qubits and atomic ensembles , 2009, 0902.0881.

[11]  M. Lukin,et al.  Capacitive coupling of atomic systems to mesoscopic conductors. , 2003, Physical review letters.

[12]  P Zoller,et al.  Interfacing quantum-optical and solid-state qubits. , 2004, Physical review letters.

[14]  Cheng Chin,et al.  Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces. , 2004, Physical review letters.

[15]  J. Schmiedmayer,et al.  Long-Range Order in Electronic Transport Through Disordered Metal Films , 2008, Science.

[16]  N. Vitanov,et al.  Properties of stimulated Raman adiabatic passage with intermediate-level detuning , 1997 .

[17]  D. Petrosyan,et al.  Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators. , 2008, Physical review letters.

[18]  R J Schoelkopf,et al.  Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. , 2006, Physical review letters.

[19]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[20]  A. Wallraff,et al.  Fabrication and characterization of superconducting circuit QED devices for quantum computation , 2005, IEEE Transactions on Applied Superconductivity.

[21]  P. Morse Annals of Physics , 1957, Nature.

[22]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[23]  Verhaar,et al.  Trapping of neutral atoms with resonant microwave radiation. , 1989, Physical review letters.

[24]  Physics Letters , 1962, Nature.

[25]  A. Wallraff,et al.  Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system , 2008, Nature.

[26]  T Meno,et al.  Persistent supercurrent atom chip. , 2007, Physical review letters.

[27]  P. Zoller,et al.  A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators , 2006 .

[28]  Blatt,et al.  Laser cooling of trapped three-level ions: Designing two-level systems for sideband cooling. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[29]  F. W. Cummings,et al.  Exact Solution for an N-Molecule-Radiation-Field Hamiltonian , 1968 .

[30]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[31]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[32]  József Fortágh,et al.  Magnetic microtraps for ultracold atoms , 2007 .

[33]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[34]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[35]  C. Zimmermann,et al.  Superradiant rayleigh scattering and collective atomic recoil lasing in a ring cavity. , 2007, Physical review letters.

[36]  Erik Lucero,et al.  Generation of Fock states in a superconducting quantum circuit , 2008, Nature.

[37]  J. Schmiedmayer,et al.  Microscopic atom optics: from wires to an atom chip , 2008, 0805.2613.

[38]  M. Lukin Colloquium: Trapping and manipulating photon states in atomic ensembles , 2003 .

[39]  Maier,et al.  Controlling cold atoms using nanofabricated surfaces: atom chips , 1999, Physical review letters.

[40]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[41]  Knight,et al.  Schrödinger-cat states of the electromagnetic field and multilevel atoms. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[42]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[43]  K. Mølmer,et al.  Quantum computing with a single molecular ensemble and a Cooper pair box , 2007, 0711.0606.

[44]  Realization of a superconducting atom chip. , 2006, Physical review letters.