Harmonic grammar with linear programming

Harmonic Grammar (HG) is a model of linguistic constraint interaction in which well-formedness is calculated as the sum of weighted constraint violations. We show how linear programming algorithms can be used to determine whether there is a weighting for a set of constraints that fits a set of linguistic data. Our associated software package HaLP provides a practical tool for studying large and complex linguistic systems in the HG framework, and thus it can be valuable for comparing HG’s linear model to the model of constraint ranking assumed in Optimality Theory. We describe the translation from linguistic systems to linear systems, and we report on some recent work modeling HG typologies using HaLP.

[1]  Donca Steriade,et al.  The Phonology of Perceptibility Effects: The P-Map and Its Consequences for Constraint Organization , 2008 .

[2]  Edward Flemming Scalar and categorical phenomena in a unified model of phonetics and phonology , 2001, Phonology.

[3]  L. Lombardi Positional Faithfulness and Voicing Assimilation in Optimality Theory , 1999 .

[4]  Bruce Hayes,et al.  A Maximum Entropy Model of Phonotactics and Phonotactic Learning , 2008, Linguistic Inquiry.

[5]  Alan S. Prince,et al.  Faithfulness and Identity in Prosodic Morphology , 1999 .

[6]  Robert Sedgewick,et al.  Algorithms in C , 1990 .

[7]  G. B. Dantzig,et al.  Reminiscences about the origins of linear programming , 1982, Operations Research Letters.

[8]  John J. McCarthy,et al.  Restraint of Analysis , 2006 .

[9]  Joan Mascaró,et al.  The Typology of Voicing and Devoicing , 2001 .

[10]  Gerhard Jäger,et al.  Maximum Entropy Models and Stochastic Optimality Theory , 2003 .

[11]  P. Boersma,et al.  Empirical Tests of the Gradual Learning Algorithm , 2001, Linguistic Inquiry.

[12]  Mark Johnson,et al.  Learning OT constraint rankings using a maximum entropy model , 2003 .

[13]  J. McCarthy OT constraints are categorical , 2003, Phonology.

[14]  John J. McCarthy,et al.  Comparative markedness (long version) , 2002 .

[15]  Eric Bakovic Unbounded stress and factorial typology , 2004 .

[16]  P. Smolensky,et al.  Harmonic Grammar -- A Formal Multi-Level Connectionist Theory of Linguistic Well-Formedness: An Application ; CU-CS-464-90 , 1990 .

[17]  Richard M. Saenz,et al.  University of Massachusetts occasional papers in linguistics , 1976 .

[18]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[19]  Christopher Potts,et al.  Linguistic Optimization ∗ , 2007 .

[20]  Y. Miyata,et al.  Harmonic grammar: A formal multi-level connectionist theory of linguistic well-formedness: Theoretic , 1990 .

[21]  Alan S. Prince,et al.  Generalized alignment , 1993 .

[22]  René Kager,et al.  Rhythmic directionality by positional licensing , 2001 .

[23]  A. Coetzee Just How Many Languages Are There , 2003 .

[24]  John Alderete Dominance effects as trans- derivational anti-faithfulness* , 2001 .

[25]  P. Smolensky,et al.  Optimality Theory: Constraint Interaction in Generative Grammar , 2004 .

[26]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[27]  A Prince,et al.  Optimality: From Neural Networks to Universal Grammar , 1997, Science.

[28]  Bruce Tesar,et al.  Learning optimality-theoretic grammars☆ , 1998 .

[29]  Colin Wilson,et al.  Learning Phonology With Substantive Bias: An Experimental and Computational Study of Velar Palatalization , 2006, Cogn. Sci..

[30]  Jason Riggle,et al.  Contenders and Learning , 2004 .

[31]  Eric Bakovic Harmony, Dominance and Control , 2000 .

[32]  Katta G. Murty,et al.  Operations Research: Deterministic Optimization Models , 1994 .

[33]  Bertrand Kiefer,et al.  Anything goes , 1991, Nature.

[34]  Alan Prince,et al.  Prosodic morphology : constraint interaction and satisfaction , 1993 .

[35]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[36]  Joe Pater,et al.  Lexically Specific Constraints : Gradience , Learnability , and Perception , 2005 .

[37]  Lauri Karttunen,et al.  The Proper Treatment of Optimality in Computational Phonology , 1998, ArXiv.

[38]  Giorgio Satta,et al.  Optimality Theory and the Generative Complexity of Constraint Violability , 1998, CL.

[39]  P. Boersma Praat : doing phonetics by computer (version 4.4.24) , 2006 .

[40]  Frank Keller,et al.  Linear Optimality Theory as a Model of Gradience in Grammar , 2006 .

[41]  Frank Keller,et al.  Gradience in Grammar: Experimental and Computational Aspects of Degrees of Grammaticality , 2001 .

[42]  Paul de Lacy,et al.  Markedness: Reduction and Preservation in Phonology , 2006 .