INVESTIGATION OF AN ASYMMETRIC TRIPLE-EXCITATION CORRECTION FOR COUPLED-CLUSTER ENERGIES

[1]  Rodney J. Bartlett,et al.  Noniterative energy corrections through fifth-order to the coupled cluster singles and doubles method , 1998 .

[2]  R. Bartlett,et al.  COUPLED-CLUSTER CALCULATIONS OF STRUCTURE AND VIBRATIONAL FREQUENCIES OF OZONE : ARE TRIPLE EXCITATIONS ENOUGH? , 1998 .

[3]  J. Stanton Why CCSD(T) works: a different perspective , 1997 .

[4]  H. Schaefer,et al.  Molecular geometry and vibrational frequencies of ozone from compact variational wave functions explicitly including triple and quadruple substitutions , 1997 .

[5]  T. Daniel Crawford,et al.  A new spin-restricted triple excitation correction for coupled cluster theory , 1997 .

[6]  P. Jørgensen,et al.  CCSDT calculations of molecular equilibrium geometries , 1997 .

[7]  Peter R. Taylor,et al.  Benchmark quality total atomization energies of small polyatomic molecules , 1997 .

[8]  Jürgen Gauss,et al.  The prediction of molecular equilibrium structures by the standard electronic wave functions , 1997 .

[9]  J. Gauss,et al.  Analytic Evaluation of Second Derivatives of the Energy: Computational Strategies for the CCSD and CCSD(T) Approximations , 1997 .

[10]  John F. Stanton,et al.  A simple correction to final state energies of doublet radicals described by equation-of-motion coupled cluster theory in the singles and doubles approximation , 1997 .

[11]  Rodney J. Bartlett,et al.  Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions , 1996 .

[12]  Rodney J. Bartlett,et al.  COUPLED-CLUSTER THEORY: AN OVERVIEW OF RECENT DEVELOPMENTS , 1995 .

[13]  John F. Stanton,et al.  Perturbative treatment of the similarity transformed Hamiltonian in equation‐of‐motion coupled‐cluster approximations , 1995 .

[14]  Gustavo E. Scuseria,et al.  Achieving Chemical Accuracy with Coupled-Cluster Theory , 1995 .

[15]  Stephen R. Langhoff,et al.  Quantum mechanical electronic structure calculations with chemical accuracy , 1995 .

[16]  Rodney J. Bartlett,et al.  Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI , 1993 .

[17]  T. Crawford,et al.  The balance between theoretical method and basis set quality: A systematic study of equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities , 1993 .

[18]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[19]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[20]  H. Schaefer,et al.  A systematic theoretical study of the harmonic vibrational frequencies for polyatomic molecules: The single, double, and perturbative triple excitation coupled‐cluster [CCSD(T)] method , 1993 .

[21]  K. Andersson,et al.  Vibrational frequencies of ozone : a multiconfigurational approach , 1992 .

[22]  R. Bartlett,et al.  The coupled‐cluster single, double, triple, and quadruple excitation method , 1992 .

[23]  John F. Stanton,et al.  Analytic energy gradients for open-shell coupled-cluster singles and doubles (CCSD) calculations using restricted open-shell Hartree—Fock (ROHF) reference functions , 1991 .

[24]  John F. Stanton,et al.  A benchmark coupled-cluster single, double, and triple excitation (CCSDT) study of the structure and harmonic vibrational frequencies of the ozone molecule☆ , 1991 .

[25]  Gustavo E. Scuseria,et al.  The open-shell restricted Hartree—Fock singles and doubles coupled-cluster method including triple excitations CCSD (T): application to C+3 , 1991 .

[26]  G. Scuseria,et al.  Comparison of coupled-cluster methods which include the effects of connected triple excitations , 1990 .

[27]  R. Bartlett,et al.  The coupled‐cluster single, double, and triple excitation model for open‐shell single reference functions , 1990 .

[28]  Gustavo E. Scuseria,et al.  The vibrational frequencies of ozone , 1990 .

[29]  John D. Watts,et al.  Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods , 1990 .

[30]  R. Bartlett,et al.  The equilibrium structure and harmonic vibrational frequencies of ozone: coupled cluster results including triple excitations , 1989 .

[31]  Krishnan Raghavachari,et al.  Highly correlated systems: Structure, binding energy and harmonic vibrational frequencies of ozone , 1989 .

[32]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[33]  Henry F. Schaefer,et al.  Ordering of the O-O stretching vibrational frequencies in ozone , 1989 .

[34]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[35]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[36]  David H. Magers,et al.  Highly correlated single‐reference studies of the O3 potential surface. I. Effects of high order excitations on the equilibrium structure and harmonic force field of ozone , 1989 .

[37]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[38]  Rodney J. Bartlett,et al.  Erratum: The full CCSDT model for molecular electronic structure [J. Chem. Phys. 86, 7041 (1987)] , 1988 .

[39]  Rodney J. Bartlett,et al.  An open-shell spin-restricted coupled cluster method: application to ionization potentials in nitrogen , 1988 .

[40]  W. D. Allen,et al.  The analytic evaluation of energy first derivatives for two‐configuration self‐consistent‐field configuration interaction (TCSCF‐CI) wave functions. Application to ozone and ethylene , 1987 .

[41]  Julia E. Rice,et al.  Analytic evaluation of energy gradients for the single and double excitation coupled cluster (CCSD) wave function: Theory and application , 1987 .

[42]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[43]  R. Bartlett,et al.  Towards a full CCSDT model for electron correlation. CCSDT-n models , 1987 .

[44]  C. Bauschlicher,et al.  Benchmark full configuration-interaction calculations on HF and NH2 , 1986 .

[45]  S. J. Cole,et al.  Towards a full CCSDT model for electron correlation , 1985 .

[46]  Kimihiko Hirao,et al.  The calculation of higher-order energies in the many-body perturbation theory series , 1985 .

[47]  R. Bartlett,et al.  A coupled cluster approach with triple excitations , 1984 .

[48]  Henry F. Schaefer,et al.  On the evaluation of analytic energy derivatives for correlated wave functions , 1984 .

[49]  R. Bartlett,et al.  Analytical gradients for the coupled-cluster method† , 1984 .

[50]  Hideo Sekino,et al.  A linear response, coupled‐cluster theory for excitation energy , 1984 .

[51]  N. Handy,et al.  Full CI calculations on BH, H2O, NH3, and HF , 1983 .

[52]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[53]  Nicholas C. Handy,et al.  Exact solution (within a double-zeta basis set) of the schrodinger electronic equation for water , 1981 .

[54]  K. Emrich,et al.  An extension of the coupled cluster formalism to excited states (I) , 1981 .

[55]  Debashis Mukherjee,et al.  A response-function approach to the direct calculation of the transition-energy in a multiple-cluster expansion formalism , 1979 .

[56]  L. T. Redmon,et al.  Accurate binding energies of diborane, borane carbonyl, and borazane determined by many-body perturbation theory , 1979 .

[57]  A. Barbe,et al.  Infrared spectra of 16O3 and 18O3: Darling and Dennison resonance and anharmonic potential function of ozone , 1974 .

[58]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[59]  Takehiko Tanaka,et al.  Coriolis interaction and anharmonic potential function of ozone from the microwave spectra in the excited vibrational states , 1970 .

[60]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[61]  P. Löwdin Studies in Perturbation Theory. IV. Solution of Eigenvalue Problem by Projection Operator Formalism , 1962 .

[62]  A. Dalgarno,et al.  A perturbation calculation of properties of the helium iso-electronic sequence , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[63]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .