Escorted free energy simulations.

We describe a strategy to improve the efficiency of free energy estimates by reducing dissipation in nonequilibrium Monte Carlo simulations. This strategy generalizes the targeted free energy perturbation approach [C. Jarzynski, Phys. Rev. E 65, 046122 (2002)] to nonequilibrium switching simulations, and involves generating artificial, "escorted" trajectories by coupling the evolution of the system to updates in external work parameter. Our central results are: (1) a generalized fluctuation theorem for the escorted trajectories, and (2) estimators for the free energy difference ΔF in terms of these trajectories. We illustrate the method and its effectiveness on model systems.

[1]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[2]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[3]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[4]  P. Strevens Iii , 1985 .

[5]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[6]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[7]  Peter A. Kollman,et al.  The lag between the Hamiltonian and the system configuration in free energy perturbation calculations , 1989 .

[8]  Jan Hermans,et al.  Simple analysis of noise and hysteresis in (slow-growth) free energy simulations , 1991 .

[9]  Robert H. Wood,et al.  Estimation of errors in free energy calculations due to the lag between the hamiltonian and the system configuration , 1991 .

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  W. Reinhardt,et al.  Variational path optimization and upper and lower bounds to free energy changes via finite time minimization of external work , 1992 .

[12]  William P. Reinhardt,et al.  A finite‐time variational method for determining optimal paths and obtaining bounds on free energy changes from computer simulations , 1993 .

[13]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[14]  Leonard M. Sander,et al.  Scaling and river networks: A Landau theory for erosion , 1997 .

[15]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[16]  G. Crooks Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible Markovian Systems , 1998 .

[17]  G. Crooks Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Mark A. Miller,et al.  Efficient free energy calculations by variationally optimized metric scaling: Concepts and applications to the volume dependence of cluster free energies and to solid–solid phase transitions , 2000 .

[19]  T. Fearn The Jackknife , 2000 .

[20]  G. Crooks Path-ensemble averages in systems driven far from equilibrium , 1999, cond-mat/9908420.

[21]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[22]  Thomas B Woolf,et al.  Theory of a systematic computational error in free energy differences. , 2002, Physical review letters.

[23]  Berend Smit,et al.  Accelerating Monte Carlo Sampling , 2002 .

[24]  C. Jarzynski Targeted free energy perturbation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Michael R. Shirts,et al.  Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. , 2003, Physical review letters.

[26]  Benedict J. Leimkuhler,et al.  Generating generalized distributions from dynamical simulation , 2003 .

[27]  F. Ritort,et al.  Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Zuckerman,et al.  Single-ensemble nonequilibrium path-sampling estimates of free energy differences. , 2004, The Journal of chemical physics.

[29]  D. Kofke,et al.  Rosenbluth-sampled nonequilibrium work method for calculation of free energies in molecular simulation. , 2005, The Journal of chemical physics.

[30]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[31]  David A. Kofke,et al.  On the sampling requirements for exponential-work free-energy calculations , 2006 .

[32]  C. Jarzynski Rare events and the convergence of exponentially averaged work values. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Christophe Chipot,et al.  Free Energy Calculations , 2008 .

[34]  G. Crooks,et al.  Length of time's arrow. , 2008, Physical review letters.

[35]  C. Jarzynski,et al.  Escorted free energy simulations: improving convergence by reducing dissipation. , 2008, Physical review letters.

[36]  H. Then,et al.  Using bijective maps to improve free-energy estimates. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Suriyanarayanan Vaikuntanathan,et al.  Dissipation and lag in irreversible processes , 2009, 0909.3457.

[38]  David D. L. Minh Density-dependent analysis of nonequilibrium paths improves free energy estimates. , 2009, The Journal of chemical physics.

[39]  Christophe Chipot,et al.  Good practices in free-energy calculations. , 2010, The journal of physical chemistry. B.

[40]  H. Then,et al.  Measuring the convergence of Monte Carlo free-energy calculations. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  W. Marsden I and J , 2012 .

[42]  Journal of Chemical Physics , 1932, Nature.