Critical effect of proline on thermostability of endoglucanase II from Penicillium verruculosum

[1]  M. Davari,et al.  Disulfide Bond Engineering of an Endoglucanase from Penicillium verruculosum to Improve Its Thermostability , 2019, International journal of molecular sciences.

[2]  G. Beckham,et al.  Activity and Thermostability of GH5 Endoglucanase Chimeras from Mesophilic and Thermophilic Parents , 2018, Applied and Environmental Microbiology.

[3]  Tomás Martínek,et al.  HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information , 2018, Nucleic Acids Res..

[4]  Jan Stourac,et al.  CalFitter: a web server for analysis of protein thermal denaturation data , 2018, Nucleic Acids Res..

[5]  A. Rozhkova,et al.  Effect of N-linked glycosylation on the activity and other properties of recombinant endoglucanase IIa (Cel5A) from Penicillium verruculosum. , 2016, Protein engineering, design & selection : PEDS.

[6]  P. Malhotra,et al.  How cooperative are protein folding and unfolding transitions? , 2016, Protein science : a publication of the Protein Society.

[7]  P. Volkov,et al.  N‐linked glycosylation of recombinant cellobiohydrolase I (Cel7A) from Penicillium verruculosum and its effect on the enzyme activity , 2016, Biotechnology and bioengineering.

[8]  Jung-Min Choi,et al.  Industrial applications of enzyme biocatalysis: Current status and future aspects. , 2015, Biotechnology advances.

[9]  A. Gusakov,et al.  Properties and N-glycosylation of recombinant endoglucanase II from Penicillium verruculosum , 2015, Moscow University Chemistry Bulletin.

[10]  Carsten Kutzner,et al.  Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS , 2015, EASC.

[11]  R. Casadio,et al.  Modulating the thermostability of Endoglucanase I from Trichoderma reesei using computational approaches. , 2015, Protein engineering, design & selection : PEDS.

[12]  H. Blanch,et al.  Mutagenesis of Trichoderma reesei endoglucanase I: impact of expression host on activity and stability at elevated temperatures , 2015, BMC Biotechnology.

[13]  I. Amiri,et al.  In Silico Engineering of Disulphide Bonds to Produce Stable Cellulase , 2015 .

[14]  Veeresh Juturu,et al.  Microbial cellulases: Engineering, production and applications , 2014 .

[15]  Huimin Zhao,et al.  Protein design for pathway engineering. , 2014, Journal of structural biology.

[16]  P. Shi,et al.  Thermostability Improvement of a Streptomyces Xylanase by Introducing Proline and Glutamic Acid Residues , 2014, Applied and Environmental Microbiology.

[17]  Kazi Zakia Sultana,et al.  Protein disulfide engineering , 2014, FEBS letters.

[18]  Emil Alexov,et al.  Protonation and pK changes in protein–ligand binding , 2013, Quarterly Reviews of Biophysics.

[19]  Holger Gohlke,et al.  CNA web server: rigidity theory-based thermal unfolding simulations of proteins for linking structure, (thermo-)stability, and function , 2013, Nucleic Acids Res..

[20]  Holger Gohlke,et al.  Constraint Network Analysis (CNA): A Python Software Package for Efficiently Linking Biomacromolecular Structure, Flexibility, (Thermo-)Stability, and Function , 2013, J. Chem. Inf. Model..

[21]  Holger Gohlke,et al.  Global and local indices for characterizing biomolecular flexibility and rigidity , 2013, J. Comput. Chem..

[22]  Shuang Li,et al.  Technology Prospecting on Enzymes: Application, Marketing and Engineering , 2012, Computational and structural biotechnology journal.

[23]  Ana Cauerhff,et al.  Recent trends in biocatalysis engineering. , 2012, Bioresource technology.

[24]  R. Netz,et al.  Ionic force field optimization based on single-ion and ion-pair solvation properties: going beyond standard mixing rules. , 2012, The Journal of chemical physics.

[25]  François Stricher,et al.  A graphical interface for the FoldX forcefield , 2011, Bioinform..

[26]  M. Rooman,et al.  PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality , 2011, BMC Bioinformatics.

[27]  Yong Hwan Kim,et al.  Development of thermostable lipase B from Candida antarctica (CalB) through in silico design employing B-factor and RosettaDesign , 2010 .

[28]  M. Jeya,et al.  Purification and characterization of a thermostable endo-β-1,4-glucanase from a novel strain of Penicillium purpurogenum , 2010 .

[29]  Philippe Bogaerts,et al.  Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0 , 2009, Bioinform..

[30]  Wensheng Qin,et al.  Fungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives , 2009, International journal of biological sciences.

[31]  Antonín Pavelka,et al.  HotSpot Wizard: a web server for identification of hot spots in protein engineering , 2009, Nucleic Acids Res..

[32]  Yeong-Suk Kim,et al.  Degradation of cellulose by the major endoglucanase produced from the brown-rot fungus Fomitopsis pinicola , 2008, Biotechnology Letters.

[33]  G. Gadd,et al.  A novel thermostable endoglucanase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm , 2008 .

[34]  Xiang-mei Liu,et al.  Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. , 2008, Protein expression and purification.

[35]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[36]  Gerhard Klebe,et al.  PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations , 2007, Nucleic Acids Res..

[37]  Orly Dym,et al.  A single proline substitution is critical for the thermostabilization of Clostridium beijerinckii alcohol dehydrogenase , 2006, Proteins.

[38]  Yi Liu,et al.  RosettaDesign server for protein design , 2006, Nucleic Acids Res..

[39]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[40]  François Stricher,et al.  The FoldX web server: an online force field , 2005, Nucleic Acids Res..

[41]  Nathan A. Baker,et al.  PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations , 2004, Nucleic Acids Res..

[42]  Duochuan Li,et al.  Purification and characterization of an endocellulase from the thermophilic fungus Chaetomium thermophilum CT2 , 2003 .

[43]  A. Gusakov,et al.  Isolation and Properties of Major Components of Penicillium canescens Extracellular Enzyme Complex , 2003, Biochemistry (Moscow).

[44]  E Owen,et al.  Biochemical characterization and mode of action of a thermostable endoglucanase purified from Thermoascus aurantiacus. , 2002, Archives of biochemistry and biophysics.

[45]  L. Lo Leggio,et al.  The 1.62 Å structure of Thermoascus aurantiacus endoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5 , 2002, FEBS letters.

[46]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[47]  C. Vieille,et al.  Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability , 2001, Microbiology and Molecular Biology Reviews.

[48]  M. Schülein Protein engineering of cellulases. , 2000, Biochimica et biophysica acta.

[49]  T. Sosnick,et al.  Distinguishing between two-state and three-state models for ubiquitin folding. , 2000, Biochemistry.

[50]  R. Maheshwari,et al.  Thermophilic Fungi: Their Physiology and Enzymes , 2000, Microbiology and Molecular Biology Reviews.

[51]  L. Nilsson,et al.  On the truncation of long-range electrostatic interactions in DNA. , 2000, Biophysical journal.

[52]  Junmei Wang,et al.  How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? , 2000, J. Comput. Chem..

[53]  J. Hang,et al.  Increasing the thermostability of D-xylose isomerase by introduction of a proline into the turn of a random coil. , 1999, Protein engineering.

[54]  P. Coutinho,et al.  Stabilization of Aspergillus awamori glucoamylase by proline substitution and combining stabilizing mutations. , 1998, Protein engineering.

[55]  B. Lee,et al.  Stabilization of protein structures. , 1997, Current opinion in biotechnology.

[56]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[57]  F. Stutzenberger,et al.  Purification and characterization of the major beta-1,4-endoglucanase from Thermomonospora curvata. , 1995, The Journal of applied bacteriology.

[58]  K Watanabe,et al.  Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Irrefragable proof supporting the proline rule. , 1994, European journal of biochemistry.

[59]  Peter G. Kusalik,et al.  The Spatial Structure in Liquid Water , 1994, Science.

[60]  C. Breuil,et al.  A comparison of the thermostability of cellulases from various thermophilic fungi , 1987, Applied Microbiology and Biotechnology.

[61]  G. Peterson,et al.  Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. , 1979, Analytical biochemistry.

[62]  Norton Nelson,et al.  A PHOTOMETRIC ADAPTATION OF THE SOMOGYI METHOD FOR THE DETERMINATION OF GLUCOSE , 1944 .

[63]  Keehyoung Joo,et al.  Improving physical realism, stereochemistry, and side‐chain accuracy in homology modeling: Four approaches that performed well in CASP8 , 2009, Proteins.

[64]  M. Smogyi,et al.  Notes on sugar determination. , 1952, The Journal of biological chemistry.