Questions in computable algebra and combinatorics
暂无分享,去创建一个
[1] Theodore A. Slaman,et al. Extending Partial Orders to Dense Linear Orders , 1998, Ann. Pure Appl. Log..
[2] Theodore A. Slaman,et al. On the Strength of Ramsey's Theorem , 1995, Notre Dame J. Formal Log..
[3] Stuart A. Kurtz,et al. Recursion theory and ordered groups , 1986, Ann. Pure Appl. Log..
[4] E. Szpilrajn. Sur l'extension de l'ordre partiel , 1930 .
[5] H. Kierstead. Recursive Colorings of Highly Recursive Graphs , 1981, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.
[6] Jeffrey B. Remmel,et al. Recursive Boolean algebras with recursive atoms , 1981, Journal of Symbolic Logic.
[7] Serge Grigorieff,et al. Every recursive linear ordering has a copy in DTIME-SPACE(n,log(n)) , 1990, Journal of Symbolic Logic.
[8] Henry A. Kierstead,et al. An effective version of Dilworth’s theorem , 1981 .
[9] M. Rabin. Computable algebra, general theory and theory of computable fields. , 1960 .
[10] Valentina S. Harizanov. Some Effects of Ash-Nerode and Other Decidability Conditions on Degree Spectra , 1991, Ann. Pure Appl. Log..
[11] Robert I. Soare,et al. Degrees of Orderings Not Isomorphic to Recursive Linear Orderings , 1991, Ann. Pure Appl. Log..
[12] Rodney G. Downey,et al. Effective Presentability of Boolean Algebras of Cantor-Bendixson Rank 1 , 1999, J. Symb. Log..
[13] Carl G. Jockusch,et al. Ramsey's theorem and recursion theory , 1972, Journal of Symbolic Logic.
[14] Jeffrey B. Remmel. Recursively rigid Boolean algebras , 1987, Ann. Pure Appl. Log..
[15] Carl G. Jockusch,et al. Every low Boolean algebra is isomorphic to a recursive one , 1994 .
[16] Stephen G. Simpson,et al. Countable algebra and set existence axioms , 1983, Ann. Pure Appl. Log..
[17] Jeffrey B. Remmel,et al. Recursive isomorphism types of recursive Boolean algebras , 1981, Journal of Symbolic Logic.
[18] Steffen Lempp,et al. The computational complexity of torsion-freeness of finitely presented groups , 1997, Bulletin of the Australian Mathematical Society.
[19] Henry A. Kierstead. An effective version of Hall’s theorem , 1983 .
[20] Rodney G. Downey,et al. Orderings with αth jump degree 0(α) , 1992 .