Questions in computable algebra and combinatorics

[1]  Theodore A. Slaman,et al.  Extending Partial Orders to Dense Linear Orders , 1998, Ann. Pure Appl. Log..

[2]  Theodore A. Slaman,et al.  On the Strength of Ramsey's Theorem , 1995, Notre Dame J. Formal Log..

[3]  Stuart A. Kurtz,et al.  Recursion theory and ordered groups , 1986, Ann. Pure Appl. Log..

[4]  E. Szpilrajn Sur l'extension de l'ordre partiel , 1930 .

[5]  H. Kierstead Recursive Colorings of Highly Recursive Graphs , 1981, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.

[6]  Jeffrey B. Remmel,et al.  Recursive Boolean algebras with recursive atoms , 1981, Journal of Symbolic Logic.

[7]  Serge Grigorieff,et al.  Every recursive linear ordering has a copy in DTIME-SPACE(n,log(n)) , 1990, Journal of Symbolic Logic.

[8]  Henry A. Kierstead,et al.  An effective version of Dilworth’s theorem , 1981 .

[9]  M. Rabin Computable algebra, general theory and theory of computable fields. , 1960 .

[10]  Valentina S. Harizanov Some Effects of Ash-Nerode and Other Decidability Conditions on Degree Spectra , 1991, Ann. Pure Appl. Log..

[11]  Robert I. Soare,et al.  Degrees of Orderings Not Isomorphic to Recursive Linear Orderings , 1991, Ann. Pure Appl. Log..

[12]  Rodney G. Downey,et al.  Effective Presentability of Boolean Algebras of Cantor-Bendixson Rank 1 , 1999, J. Symb. Log..

[13]  Carl G. Jockusch,et al.  Ramsey's theorem and recursion theory , 1972, Journal of Symbolic Logic.

[14]  Jeffrey B. Remmel Recursively rigid Boolean algebras , 1987, Ann. Pure Appl. Log..

[15]  Carl G. Jockusch,et al.  Every low Boolean algebra is isomorphic to a recursive one , 1994 .

[16]  Stephen G. Simpson,et al.  Countable algebra and set existence axioms , 1983, Ann. Pure Appl. Log..

[17]  Jeffrey B. Remmel,et al.  Recursive isomorphism types of recursive Boolean algebras , 1981, Journal of Symbolic Logic.

[18]  Steffen Lempp,et al.  The computational complexity of torsion-freeness of finitely presented groups , 1997, Bulletin of the Australian Mathematical Society.

[19]  Henry A. Kierstead An effective version of Hall’s theorem , 1983 .

[20]  Rodney G. Downey,et al.  Orderings with αth jump degree 0(α) , 1992 .