Motion estimation from noisy omnidirectional images

Motion estimation methods in both perspective and omnidirectional cases presume that the input images are free-noise, and when using noisy images almost all of those methods yields poor results. In this paper we will examine the behavior and the performance of the phase-based method that we introduced in a previous work, in the presence of different kinds of noise.

[1]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[2]  HANS-HELLMUT NAGEL,et al.  On a Constraint Equation for the Estimation of Displacement Rates in Image Sequences , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Ming-Liang Wang,et al.  An Intelligent Surveillance System Based on an Omnidirectional Vision Sensor , 2006, 2006 IEEE Conference on Cybernetics and Intelligent Systems.

[4]  Pascal Frossard,et al.  Multiresolution motion estimation for omnidirectional images , 2005, 2005 13th European Signal Processing Conference.

[5]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[6]  Cédric Demonceaux,et al.  Optical flow estimation in omnidirectional images using wavelet approach , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.

[7]  A. Makadia,et al.  Image processing in catadioptric planes: spatiotemporal derivatives and optical flow computation , 2002, Proceedings of the IEEE Workshop on Omnidirectional Vision 2002. Held in conjunction with ECCV'02.

[8]  Pascal Frossard,et al.  Optical flow and depth from motion for omnidirectional images using a TV-L1 variational framework on graphs , 2009, ICIP.

[9]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[10]  Atsushi Imiya,et al.  Free Space Detection from Catadioptric Omnidirectional Images for Visual Navigation using Optical Flow , 2008 .

[11]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[12]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[13]  David J. Fleet,et al.  Stability of phase information , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[14]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[15]  J. Gaspar,et al.  Omni-directional vision for robot navigation , 2000, Proceedings IEEE Workshop on Omnidirectional Vision (Cat. No.PR00704).

[16]  Ben J. A. Kröse,et al.  Visual odometry from an omnidirectional vision system , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[17]  Shree K. Nayar,et al.  Ego-motion and omnidirectional cameras , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[18]  Kostas Daniilidis,et al.  Catadioptric Projective Geometry , 2001, International Journal of Computer Vision.

[19]  Driss Aboutajdine,et al.  An adapted Lucas-Kanade's method for optical flow estimation in catadioptric images , 2008 .

[20]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[21]  Tien-Ren Tsao,et al.  A neural scheme for optical flow computation based on Gabor filters and generalized gradient method , 1994, Neurocomputing.

[22]  Driss Aboutajdine,et al.  Optical flow estimation from multichannel spherical image decomposition , 2011, Comput. Vis. Image Underst..

[23]  Atsushi Imiya,et al.  Featureless Visual Navigation using Optical Flow of Omnidirectional Image Sequence , 2008 .

[24]  Yasuo Suga,et al.  An Omnidirectional Vision-Based Moving Obstacle Detection in Mobile Robot , 2007 .

[25]  Atsushi Imiya,et al.  Multiresolution Optical Flow Computation of Spherical Images , 2011, CAIP.

[26]  Driss Aboutajdine,et al.  Optical Flow Estimation on Omnidirectional Images: An Adapted Phase Based Method , 2012, ICISP.

[27]  Marc M. Van Hulle,et al.  A phase-based approach to the estimation of the optical flow field using spatial filtering , 2002, IEEE Trans. Neural Networks.

[28]  Laurent Demanet,et al.  Gabor wavelets on the sphere , 2003, SPIE Optics + Photonics.

[29]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.