Principal component analysis based methodology to distinguish protein SERS spectra

[1]  H. Neurath,et al.  ON THE STRUCTURE AND FUNCTION OF BOVINE TRYPSINOGEN AND TRYPSIN. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[2]  I. Lednev,et al.  Deep-UV Raman spectrometer tunable between 193 and 205 nm for structural characterization of proteins , 2005, Analytical and bioanalytical chemistry.

[3]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[4]  K. Brew,et al.  The complete amino acid sequence of bovine α-lactalbumin. , 1970 .

[5]  J Popp,et al.  Minimal invasive gender determination of birds by means of UV-resonance Raman spectroscopy. , 2008, Analytical chemistry.

[6]  Hyung-Kyoon Choi,et al.  Metabolomic profiling of Vitis vinifera cell suspension culture elicited with silver nitrate by 1H NMR spectrometry and principal components analysis , 2007 .

[7]  Edgar Voges,et al.  Periodically structured metallic substrates for SERS , 1998 .

[8]  Y. Ozaki,et al.  Surface-enhanced Raman scattering and plasmon excitations from isolated and elongated gold nanoaggregates , 2009 .

[9]  E. Li-Chan,et al.  Principal component similarity analysis of Raman spectra to study the effects of pH, heating, and kappa-carrageenan on whey protein structure. , 2002, Journal of agricultural and food chemistry.

[10]  Francesco De Angelis,et al.  Nano-patterned SERS substrate: application for protein analysis vs. temperature. , 2009, Biosensors & bioelectronics.

[11]  Dor Ben-Amotz,et al.  Raman detection of proteomic analytes. , 2003, Analytical chemistry.

[12]  A. E. Sippel,et al.  Exons encode functional and structural units of chicken lysozyme. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[13]  P. Hildebrandt,et al.  Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver , 1984 .

[14]  D. A. Stuart,et al.  In vivo glucose measurement by surface-enhanced Raman spectroscopy. , 2006, Analytical chemistry.

[15]  A. McPherson,et al.  The crystal structure of ribonuclease B at 2.5-A resolution. , 1988, The Journal of biological chemistry.

[16]  T. Shimanouchi,et al.  Interpretation of the doublet at 850 and 830 cm-1 in the Raman spectra of tyrosyl residues in proteins and certain model compounds. , 1975, Biochemistry.

[17]  M. Pelletier,et al.  Raman sensitivity enhancement for aqueous protein samples using a liquid-core optical-fiber cell. , 2001, Analytical chemistry.

[18]  M. Dautrevaux,et al.  Structure covalente de la myoglobine de cheval , 1969 .

[19]  Y. Ozaki,et al.  Surface-Enhanced Raman Spectroscopy , 2005 .

[20]  N. Stone,et al.  The use of Raman spectroscopy to identify and characterize transitional cell carcinoma in vitro , 2004, BJU international.

[21]  I. Harada,et al.  Raman spectroscopic characterization of tryptophan side chains in lysozyme bound to inhibitors: role of the hydrophobic box in the enzymatic function. , 1991, Biochemistry.

[22]  N. Yu Comparison of protein structure in crystals, in lyophilized state, and in solution by laser Raman scattering. 3. Alpha-Lactalbumin. , 1974, Journal of the American Chemical Society.

[23]  Lindsay Sawyer,et al.  Invited Review: β-Lactoglobulin: Binding Properties, Structure, and Function , 2004 .

[24]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[25]  Francesco De Angelis,et al.  A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. , 2008, Nano letters.

[26]  A. Cooper,et al.  Vibrational Raman optical activity of alpha-lactalbumin: comparison with lysozyme, and evidence for native tertiary folds in molten globule states. , 1995, Journal of molecular biology.

[27]  J. Hope,et al.  Raman optical activity demonstrates poly(L-proline) II helix in the N-terminal region of the ovine prion protein: implications for function and misfunction. , 2004, Journal of molecular biology.

[28]  W. Bode,et al.  The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. , 1975, Journal of molecular biology.

[29]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[30]  E. Li-Chan,et al.  Elucidation of interactions of lysozyme with whey proteins by Raman spectroscopy , 1996 .

[31]  R. Forbes,et al.  Preparation and characterisation of spray-dried and crystallised trypsin: FT-Raman study to detect protein denaturation after thermal stress. , 2007, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[32]  S. Akashi,et al.  Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS. , 1990, Biochemical and biophysical research communications.

[33]  G. Thomas,et al.  Structure similarity, difference and variability in the filamentous viruses fd, If1, IKe, Pf1 and Xf. Investigation by laser Raman spectroscopy. , 1983, Journal of molecular biology.

[34]  R. V. Van Duyne,et al.  Solution-phase, triangular ag nanotriangles fabricated by nanosphere lithography. , 2005, The journal of physical chemistry. B.

[35]  G. Thomas Raman spectroscopy of protein and nucleic acid assemblies. , 1999, Annual review of biophysics and biomolecular structure.

[36]  B. Gaber,et al.  Laser Raman scattering as a probe of protein structure. , 1977, Annual review of biochemistry.

[37]  S. Moore,et al.  The sequence of amino acid residues in bovine pancreatic ribonuclease: revisions and confirmations. , 1963, The Journal of biological chemistry.

[38]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.