Axioms for minimax regret choice correspondences

This paper unifies and extends the recent axiomatic literature on minimax regret. It compares several models of minimax regret, shows how to characterize the according choice correspondences in a unified setting, extends one of them to choice from convex (through randomization) sets, and connects them by defining a behavioral notion of perceived ambiguity. Substantively, a main idea is to behaviorally identify ambiguity with failures of independence of irrelevant alternatives. Regarding proof technique, the core contribution is to uncover a dualism between choice correspondences and preferences in an environment where this dualism is not obvious. This insight can be used to generate results by importing findings from the existing literature on preference orderings.

[1]  Yonina C. Eldar,et al.  Linear minimax regret estimation of deterministic parameters with bounded data uncertainties , 2004, IEEE Transactions on Signal Processing.

[2]  William A. Brock,et al.  Profiling Problems with Partially Identified Structure , 2006 .

[3]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[4]  Joseph Y. Halpern,et al.  Iterated Regret Minimization: A New Solution Concept , 2009, IJCAI.

[5]  A. Sen,et al.  Choice Functions and Revealed Preference , 1971 .

[6]  Kfir Eliaz,et al.  Indifference or indecisiveness? Choice-theoretic foundations of incomplete preferences , 2006, Games Econ. Behav..

[7]  D. Bergemann,et al.  Pricing Without Priors , 2007 .

[8]  Jörg Stoye Revealed Preference When Agents Can Randomize , 2010 .

[9]  Jörg Stoye,et al.  Statistical decisions under ambiguity , 2011 .

[10]  A. Dasgupta,et al.  ESTIMATING A BINOMIAL PARAMETER: IS ROBUST BAYES REAL BAYES? , 1993 .

[11]  Bernd Droge,et al.  Minimax regret comparison of hard and soft thresholding for estimating a bounded normal mean , 2006 .

[12]  Karl H. Schlag,et al.  How to Minimize Maximum Regret in Repeated Decision-Making , 2004 .

[13]  Charles F. Manski,et al.  Social Choice with Partial Knowledge of Treatment Response , 2020 .

[14]  Bruce E. Hansen,et al.  EXACT MEAN INTEGRATED SQUARED ERROR OF HIGHER ORDER KERNEL ESTIMATORS , 2005, Econometric Theory.

[15]  S. Chew A Generalization of the Quasilinear Mean with Applications to the Measurement of Income Inequality and Decision Theory Resolving the Allais Paradox , 1983 .

[16]  Jean-Marc Tallon,et al.  Are beliefs a matter of taste? A case for objective imprecise information , 2011 .

[17]  K. Arrow Rational Choice Functions and Orderings1 , 1959 .

[18]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[19]  Roy Radner,et al.  Minimax-regret strategies for bargaining over several variables , 1989 .

[20]  H. Chernoff Rational Selection of Decision Functions , 1954 .

[21]  W. J. Studden,et al.  Robust Bayesian Experimental Designs in Normal Linear Models , 1991 .

[22]  J. Milnor Games Against Nature , 1951 .

[23]  T. Bewley Knightian decision theory. Part I , 2002 .

[24]  J. Jaffray,et al.  Rational Behavior under Complete Ignorance , 1980 .

[25]  Massimo Marinacci,et al.  Differentiating ambiguity and ambiguity attitude , 2004, J. Econ. Theory.

[26]  Thibault Gajdos,et al.  Decision making with imprecise probabilistic information , 2004 .

[27]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[28]  Thibault Gajdos,et al.  Attitude toward imprecise information , 2008, J. Econ. Theory.

[29]  Lars Peter Hansen,et al.  Robust control and model misspecification , 2006, J. Econ. Theory.

[30]  Clemens Puppe,et al.  Choice under complete uncertainty when outcome spaces are state dependent , 2009 .

[31]  Massimo Marinacci,et al.  Certainty Independence and the Separation of Utility and Beliefs , 2005, J. Econ. Theory.

[32]  Ludovic Renou,et al.  Implementation in Minimax Regret Equilibrium , 2009, Games Econ. Behav..

[33]  Jörg Stoye MINIMAX REGRET TREATMENT CHOICE WITH INCOMPLETE DATA AND MANY TREATMENTS , 2006, Econometric Theory.

[34]  Todd Sarver,et al.  ANTICIPATING REGRET : WHY FEWER OPTIONS MAY BE BETTER , 2008 .

[35]  Jürg Niehans,et al.  Zur Preisbildungen bei ungewissen Erwartungen , 1948 .

[36]  Takashi Hayashi,et al.  Context dependence and consistency in dynamic choice under uncertainty: the case of anticipated regret , 2011 .

[37]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[38]  Alfonso Suárez-Llorens,et al.  Bayesian Robustness with Quantile Loss Functions , 2003, ISIPTA.

[39]  David Schmeidleis SUBJECTIVE PROBABILITY AND EXPECTED UTILITY WITHOUT ADDITIVITY , 1989 .

[40]  Faruk Gul,et al.  Temptation and Self‐Control , 1999 .

[41]  D. Bergemann,et al.  Robust Monopoly Pricing: The Case of Regret , 2005 .

[42]  Leonard J. Savage,et al.  The Theory of Statistical Decision , 1951 .

[43]  R. Sugden,et al.  Regret Theory: An alternative theory of rational choice under uncertainty Review of Economic Studies , 1982 .

[44]  Malay Ghosh,et al.  Nonsubjective priors via predictive relative entropy regret , 2006 .

[45]  Charles F. Manski,et al.  Identification problems and decisions under ambiguity: Empirical analysis of treatment response and normative analysis of treatment choice , 2000 .

[46]  Bernd Droge,et al.  Minimax regret analysis of orthogonal series regression estimation : Selection versus shrinkage , 1998 .

[47]  Charles F. Manski,et al.  DIVERSIFIED TREATMENT UNDER AMBIGUITY , 2008 .

[48]  G. Shackle,et al.  Uncertainty and expectations in economics : essays in honour of G.L.S. Shackle , 1972 .

[49]  Kyoungwon Seo,et al.  AMBIGUITY AND SECOND-ORDER BELIEF , 2009 .

[50]  K. Arrow,et al.  The New Palgrave Dictionary of Economics , 2020 .

[51]  T. Palley,et al.  Uncertainty and Expectations , 1996 .

[52]  David M. Kreps A REPRESENTATION THEOREM FOR "PREFERENCE FOR FLEXIBILITY" , 1979 .

[53]  Robert Sugden,et al.  An Axiomatic Foundation for Regret Theory , 1993 .

[54]  Dirk Bergemann,et al.  Robust Monopoly Pricing , 2008, J. Econ. Theory.

[55]  Massimo Marinacci,et al.  Ambiguity Made Precise: A Comparative Foundation , 1998, J. Econ. Theory.

[56]  C. Manski,et al.  The 2009 Lawrence R. Klein Lecture: Diversified Treatment Under Ambiguity , 2009 .

[57]  Takashi Hayashi,et al.  Stopping with anticipated regret , 2009 .

[58]  L. Blume,et al.  The New Palgrave Dictionary of Economics, 2nd edition , 2008 .

[59]  Larry Wasserman,et al.  Computing bounds on expectations , 1992 .

[60]  Ludovic Renou,et al.  Minimax Regret and Strategic Uncertainty , 2008, J. Econ. Theory.

[61]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[62]  Eddie Dekel An axiomatic characterization of preferences under uncertainty: Weakening the independence axiom , 1986 .

[63]  Gary Chamberlain,et al.  Econometrics and decision theory , 2000 .

[64]  S. Hart,et al.  A General Class of Adaptive Strategies , 1999 .

[65]  C. Manski Statistical treatment rules for heterogeneous populations , 2003 .

[66]  J. Milnor,et al.  AN AXIOMATIC APPROACH TO MEASURABLE UTILITY , 1953 .

[67]  Kenneth J. Arrow,et al.  Studies in Resource Allocation Processes: Appendix: An optimality criterion for decision-making under ignorance , 1977 .

[68]  Charles F. Manski,et al.  Minimax-regret treatment choice with missing outcome data , 2007 .

[69]  Pietro Ortoleva,et al.  Status quo bias, multiple priors and uncertainty aversion , 2010, Games Econ. Behav..

[70]  Peter C. Fishburn,et al.  Non-transitive measurable utility for decision under uncertainty , 1989 .

[71]  Jörg Stoye Minimax regret treatment choice with covariates or with limited validity of experiments , 2012 .

[72]  Jörg Stoye,et al.  Minimax regret treatment choice with finite samples , 2009 .

[73]  Takashi Hayashi,et al.  Regret aversion and opportunity dependence , 2008, J. Econ. Theory.

[74]  Karl H. Schlag,et al.  Minimax Regret in Practice-Four Examples on Treatment Choice 1 , 2006 .

[75]  David Lindley,et al.  Statistical Decision Functions , 1951, Nature.