Ab initio determination of anharmonic phonon peaks

[1]  M. Calandra,et al.  Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides , 2013, 1311.3083.

[2]  Jens Kortus,et al.  Beyond Eliashberg Superconductivity in MgB2 , 2001 .

[3]  Gernot Deinzer,et al.  Ab initio calculation of the linewidth of various phonon modes in germanium and silicon , 2003 .

[4]  S. I. Simak,et al.  Lattice dynamics of anharmonic solids from first principles , 2011, 1103.5590.

[5]  M. Nardelli,et al.  An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW—AAPL Automatic Anharmonic Phonon Library , 2017, npj Computational Materials.

[6]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[7]  W. Pickett,et al.  Superconductivity of MgB2 , 2001 .

[8]  A. France-Lanord,et al.  Thermal Transport in Supported Graphene: Substrate Effects on Collective Excitations , 2017 .

[9]  S. Tsuneyuki,et al.  Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO 3 with first-principles anharmonic force constants , 2015, 1506.01781.

[10]  J Kortus,et al.  Superconductivity of metallic boron in MgB2. , 2001, Physical review letters.

[11]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[12]  P. Debye,et al.  Interferenz von Röntgenstrahlen und Wärmebewegung , 1913 .

[13]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[14]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[15]  Georg Kresse,et al.  Ab initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite , 1995 .

[16]  M. Calandra,et al.  Anharmonic and non-adiabatic effects in MgB2: Implications for the isotope effect and interpretation of Raman spectra , 2007 .

[17]  W. Kohn Image of the Fermi Surface in the Vibration Spectrum of a Metal , 1959 .

[18]  S. Tsuneyuki,et al.  First-Principles Lattice Dynamics Method for Strongly Anharmonic Crystals , 2017, 1706.04744.

[19]  Xiang-Rong Chen,et al.  Ab initio dynamical stability of tungsten at high pressures and high temperatures , 2018 .

[20]  L. Pietronero,et al.  Small Fermi energy and phonon anharmonicity in MgB2 and related compounds , 2002 .

[21]  H. Ott Der Einflu der Temperatur auf die Rntgenstreuung fester Krper nach der Quantenmechanik , 1935 .

[22]  Y. Kawazoe,et al.  Ab initio study of phonons and structural stabilities of the perovskite-type $$MgSi{O_3}$$ , 2000 .

[23]  Harold T. Stokes,et al.  Method to extract anharmonic force constants from first principles calculations , 2008 .

[24]  Giant Anharmonicity and Nonlinear Electron-Phonon Coupling in MgB2 , 2001 .

[25]  R J Cava,et al.  Giant anharmonicity and nonlinear electron-phonon coupling in MgB2: a combined first-principles calculation and neutron scattering study. , 2001, Physical review letters.

[26]  F. Peeters,et al.  Theory of anharmonic phonons in two-dimensional crystals , 2014, 1412.6993.

[27]  N. Werthamer Self-Consistent Phonon Formulation of Anharmonic Lattice Dynamics , 1970 .

[28]  Hiroshi Takeda,et al.  Effect of pressure on the crystal structure of perovskite-type MgSiO3 , 1987 .

[29]  Jun Tsuchiya,et al.  Ab initio lattice thermal conductivity of MgSiO3 perovskite as found in Earth's lower mantle. , 2013, Physical review letters.

[30]  P. Souvatzis Phonon lifetimes from first-principles self-consistent lattice dynamics , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  Electron-phonon coupling and phonon self-energy in MgB 2 : Interpretation of MgB 2 Raman spectra , 2004, cond-mat/0406072.

[32]  M I Katsnelson,et al.  Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. , 2008, Physical review letters.

[33]  E. Ito,et al.  Synthesis and crystal-chemical characterization of MgSiO3 perovskite , 1978 .

[34]  P. B. Allen Neutron spectroscopy of superconductors , 1972 .

[35]  Jiawei Xian,et al.  Lattice Thermal Conductivity of MgSiO3 Perovskite from First Principles , 2017, Scientific Reports.

[36]  S. L. Daraszewicz,et al.  Determination of the electron–phonon coupling constant in tungsten , 2014 .

[37]  D. Weidner,et al.  Perovskite-type MgSiO 3 ; single-crystal X-ray diffraction study , 1987 .

[38]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[39]  J Kortus,et al.  Beyond Eliashberg superconductivity in MgB2: anharmonicity, two-phonon scattering, and multiple gaps. , 2001, Physical review letters.

[40]  Sow-Hsin Chen,et al.  Lattice dynamics of molybdenum , 1964 .

[41]  B. N. Brockhouse,et al.  Lattice vibrations in tungsten at 22 °C studied by neutron scattering , 1976 .

[42]  A. Maradudin,et al.  SCATTERING OF NEUTRONS BY AN ANHARMONIC CRYSTAL , 1962 .

[43]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[44]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[45]  R. Wentzcovitch,et al.  Dynamic stabilization of cubic Ca Si O 3 perovskite at high temperatures and pressures from ab initio molecular dynamics , 2014 .

[46]  H. Horner Lattice dynamics of quantum crystals , 1967 .

[47]  Jose Menendez,et al.  Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α − S n : Anharmonic effects , 1984 .

[48]  O. V. Dolgov,et al.  Electron-phonon interaction in the normal and superconducting states of MgB 2 , 2001 .

[49]  V. Ozoliņš,et al.  Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations. , 2014, Physical review letters.

[50]  W. Pickett,et al.  Superconductivity of MgB2: covalent bonds driven metallic. , 2001, Physical review letters.

[51]  Dong-Bo Zhang,et al.  Phonon quasiparticles and anharmonic free energy in complex systems. , 2013, Physical review letters.

[52]  Igor A. Abrikosov,et al.  Temperature-dependent effective third-order interatomic force constants from first principles , 2013, 1308.5436.