Ab initio determination of anharmonic phonon peaks
暂无分享,去创建一个
[1] M. Calandra,et al. Anharmonic free energies and phonon dispersions from the stochastic self-consistent harmonic approximation: Application to platinum and palladium hydrides , 2013, 1311.3083.
[2] Jens Kortus,et al. Beyond Eliashberg Superconductivity in MgB2 , 2001 .
[3] Gernot Deinzer,et al. Ab initio calculation of the linewidth of various phonon modes in germanium and silicon , 2003 .
[4] S. I. Simak,et al. Lattice dynamics of anharmonic solids from first principles , 2011, 1103.5590.
[5] M. Nardelli,et al. An efficient and accurate framework for calculating lattice thermal conductivity of solids: AFLOW—AAPL Automatic Anharmonic Phonon Library , 2017, npj Computational Materials.
[6] Yoshiyuki Kawazoe,et al. First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .
[7] W. Pickett,et al. Superconductivity of MgB2 , 2001 .
[8] A. France-Lanord,et al. Thermal Transport in Supported Graphene: Substrate Effects on Collective Excitations , 2017 .
[9] S. Tsuneyuki,et al. Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO 3 with first-principles anharmonic force constants , 2015, 1506.01781.
[10] J Kortus,et al. Superconductivity of metallic boron in MgB2. , 2001, Physical review letters.
[11] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[12] P. Debye,et al. Interferenz von Röntgenstrahlen und Wärmebewegung , 1913 .
[13] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[14] J. Nagamatsu,et al. Superconductivity at 39 K in magnesium diboride , 2001, Nature.
[15] Georg Kresse,et al. Ab initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite , 1995 .
[16] M. Calandra,et al. Anharmonic and non-adiabatic effects in MgB2: Implications for the isotope effect and interpretation of Raman spectra , 2007 .
[17] W. Kohn. Image of the Fermi Surface in the Vibration Spectrum of a Metal , 1959 .
[18] S. Tsuneyuki,et al. First-Principles Lattice Dynamics Method for Strongly Anharmonic Crystals , 2017, 1706.04744.
[19] Xiang-Rong Chen,et al. Ab initio dynamical stability of tungsten at high pressures and high temperatures , 2018 .
[20] L. Pietronero,et al. Small Fermi energy and phonon anharmonicity in MgB2 and related compounds , 2002 .
[21] H. Ott. Der Einflu der Temperatur auf die Rntgenstreuung fester Krper nach der Quantenmechanik , 1935 .
[22] Y. Kawazoe,et al. Ab initio study of phonons and structural stabilities of the perovskite-type $$MgSi{O_3}$$ , 2000 .
[23] Harold T. Stokes,et al. Method to extract anharmonic force constants from first principles calculations , 2008 .
[24] Giant Anharmonicity and Nonlinear Electron-Phonon Coupling in MgB2 , 2001 .
[25] R J Cava,et al. Giant anharmonicity and nonlinear electron-phonon coupling in MgB2: a combined first-principles calculation and neutron scattering study. , 2001, Physical review letters.
[26] F. Peeters,et al. Theory of anharmonic phonons in two-dimensional crystals , 2014, 1412.6993.
[27] N. Werthamer. Self-Consistent Phonon Formulation of Anharmonic Lattice Dynamics , 1970 .
[28] Hiroshi Takeda,et al. Effect of pressure on the crystal structure of perovskite-type MgSiO3 , 1987 .
[29] Jun Tsuchiya,et al. Ab initio lattice thermal conductivity of MgSiO3 perovskite as found in Earth's lower mantle. , 2013, Physical review letters.
[30] P. Souvatzis. Phonon lifetimes from first-principles self-consistent lattice dynamics , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.
[31] Electron-phonon coupling and phonon self-energy in MgB 2 : Interpretation of MgB 2 Raman spectra , 2004, cond-mat/0406072.
[32] M I Katsnelson,et al. Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. , 2008, Physical review letters.
[33] E. Ito,et al. Synthesis and crystal-chemical characterization of MgSiO3 perovskite , 1978 .
[34] P. B. Allen. Neutron spectroscopy of superconductors , 1972 .
[35] Jiawei Xian,et al. Lattice Thermal Conductivity of MgSiO3 Perovskite from First Principles , 2017, Scientific Reports.
[36] S. L. Daraszewicz,et al. Determination of the electron–phonon coupling constant in tungsten , 2014 .
[37] D. Weidner,et al. Perovskite-type MgSiO 3 ; single-crystal X-ray diffraction study , 1987 .
[38] Wu Li,et al. ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..
[39] J Kortus,et al. Beyond Eliashberg superconductivity in MgB2: anharmonicity, two-phonon scattering, and multiple gaps. , 2001, Physical review letters.
[40] Sow-Hsin Chen,et al. Lattice dynamics of molybdenum , 1964 .
[41] B. N. Brockhouse,et al. Lattice vibrations in tungsten at 22 °C studied by neutron scattering , 1976 .
[42] A. Maradudin,et al. SCATTERING OF NEUTRONS BY AN ANHARMONIC CRYSTAL , 1962 .
[43] E.J. Candes,et al. An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.
[44] W. Heisenberg,et al. Zur Quantentheorie der Molekeln , 1924 .
[45] R. Wentzcovitch,et al. Dynamic stabilization of cubic Ca Si O 3 perovskite at high temperatures and pressures from ab initio molecular dynamics , 2014 .
[46] H. Horner. Lattice dynamics of quantum crystals , 1967 .
[47] Jose Menendez,et al. Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α − S n : Anharmonic effects , 1984 .
[48] O. V. Dolgov,et al. Electron-phonon interaction in the normal and superconducting states of MgB 2 , 2001 .
[49] V. Ozoliņš,et al. Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations. , 2014, Physical review letters.
[50] W. Pickett,et al. Superconductivity of MgB2: covalent bonds driven metallic. , 2001, Physical review letters.
[51] Dong-Bo Zhang,et al. Phonon quasiparticles and anharmonic free energy in complex systems. , 2013, Physical review letters.
[52] Igor A. Abrikosov,et al. Temperature-dependent effective third-order interatomic force constants from first principles , 2013, 1308.5436.