Java Implementation of a Parameter-less Evolutionary Portfolio

The Java implementation of a portfolio of parameter-less evolutionary algorithms is presented. The Parameter-less Evolutionary Portfolio implements a heuristic that performs adaptive selection of parameter-less evolutionary algorithms in accordance with performance criteria that are measured during running time. At present time, the portfolio includes three parameter-less evolutionary algorithms: Parameter-less Univariate Marginal Distribution Algorithm, Parameter-less Extended Compact Genetic Algorithm, and Parameter-less Hierarchical Bayesian Optimization Algorithm. Initial experiments showed that the parameter-less portfolio can solve various classes of problems without the need for any prior parameter setting technique and with an increase in computational effort that can be considered acceptable.

[1]  Martin Pelikan,et al.  Hierarchical Bayesian optimization algorithm: toward a new generation of evolutionary algorithms , 2010, SICE 2003 Annual Conference (IEEE Cat. No.03TH8734).

[2]  Martin Pelikan,et al.  Parameter-less Hierarchical Bayesian Optimization Algorithm , 2007, Parameter Setting in Evolutionary Algorithms.

[3]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[4]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[5]  David E. Goldberg,et al.  Linkage Problem, Distribution Estimation, and Bayesian Networks , 2000, Evolutionary Computation.

[6]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[7]  Martin Pelikan,et al.  Parameter-less Genetic Algorithm: A Worst-case Time and Space Complexity Analysis , 2000, GECCO.

[8]  David E. Goldberg,et al.  Hierarchical Bayesian Optimization Algorithm , 2006, Scalable Optimization via Probabilistic Modeling.

[9]  Dirk Thierens,et al.  Toward a Better Understanding of Mixing in Genetic Algorithms , 1993 .

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[12]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[13]  Cláudio F. Lima,et al.  Adaptive Population Sizing Schemes in Genetic Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[14]  Cláudio F. Lima,et al.  Towards automated selection of estimation of distribution algorithms , 2010, GECCO '10.

[15]  Aurora Trinidad Ramirez Pozo,et al.  Controlling the Population Size in Genetic Programming , 2002, SBIA.

[16]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[17]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.