Imaging in cutis laxa syndrome caused by a dominant negative ALDH18A1 mutation, with hypotheses for intracranial vascular tortuosity and wide perivascular spaces.

[1]  K. Boycott,et al.  Autosomal dominant cutis laxa with progeroid features due to a novel, de novo mutation in ALDH18A1 , 2017, Journal of Human Genetics.

[2]  A. Hoischen,et al.  Mutations in ATP6V1E1 or ATP6V1A Cause Autosomal-Recessive Cutis Laxa. , 2017, American Journal of Human Genetics.

[3]  T. Tsunoda,et al.  ALDH18A1-related cutis laxa syndrome with cyclic vomiting , 2016, Brain and Development.

[4]  J. Ganesh,et al.  Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa. , 2015, American journal of human genetics.

[5]  B. Callewaert,et al.  The Genetics of Soft Connective Tissue Disorders. , 2015, Annual review of genomics and human genetics.

[6]  S. Mundlos,et al.  Severe congenital cutis laxa with cardiovascular manifestations due to homozygous deletions in ALDH18A1. , 2014, Molecular genetics and metabolism.

[7]  R. Wevers,et al.  Cutis laxa, fat pads and retinopathy due to ALDH18A1 mutation and review of the literature. , 2014, European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society.

[8]  Martin S. Taylor,et al.  Loss of ALDH18A1 function is associated with a cellular lipid droplet phenotype suggesting a link between autosomal recessive cutis laxa type 3A and Warburg Micro syndrome , 2014, Molecular genetics & genomic medicine.

[9]  O. Togao,et al.  Systemic vascular phenotypes of Loeys-Dietz syndrome in a child carrying a de novo R381P mutation in TGFBR2: a case report , 2013, BMC Research Notes.

[10]  R. Barone,et al.  Imaging findings of mucopolysaccharidoses: a pictorial review , 2013, Insights into Imaging.

[11]  M. Baumgartner,et al.  Understanding pyrroline-5-carboxylate synthetase deficiency: clinical, molecular, functional, and expression studies, structure-based analysis, and novel therapy with arginine , 2012, Journal of Inherited Metabolic Disease.

[12]  F. Brancati,et al.  De Barsy Syndrome: A genetically heterogeneous autosomal recessive cutis laxa syndrome related to P5CS and PYCR1 dysfunction , 2012, American journal of medical genetics. Part A.

[13]  Hai-Chao Han Twisted Blood Vessels: Symptoms, Etiology and Biomechanical Mechanisms , 2012, Journal of Vascular Research.

[14]  S. Robertson,et al.  Further expansion of the phenotypic spectrum associated with mutations in ALDH18A1, encoding Δ1‐pyrroline‐5‐carboxylate synthase (P5CS) , 2011, American journal of medical genetics. Part A.

[15]  R. Wevers,et al.  Metabolic cutis laxa syndromes , 2011, Journal of Inherited Metabolic Disease.

[16]  K. Auguste,et al.  Cervical and Intracranial Arterial Anomalies in 70 Patients with PHACE Syndrome , 2010, American Journal of Neuroradiology.

[17]  Frederik Barkhof,et al.  Magnetic resonance imaging pattern recognition in hypomyelinating disorders. , 2010, Brain : a journal of neurology.

[18]  P. Landrieu,et al.  Developmental dilatation of Virchow-Robin spaces: a genetic disorder? , 2009, Pediatric neurology.

[19]  Peter Nürnberg,et al.  Mutations in PYCR1 cause cutis laxa with progeroid features , 2009, Nature Genetics.

[20]  S. Robertson,et al.  A missense mutation in ALDH18A1, encoding Δ1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome , 2008, European Journal of Human Genetics.

[21]  R O Weller,et al.  Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology , 2008, Neuropathology and applied neurobiology.

[22]  S. Nik-Zainal,et al.  Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families , 2008, Human mutation.

[23]  E. Zackai,et al.  Neuroimaging findings in macrocephaly–capillary malformation: A longitudinal study of 17 patients , 2007, American journal of medical genetics. Part A.

[24]  Thomas C Kwee,et al.  Virchow-Robin spaces at MR imaging. , 2007, Radiographics : a review publication of the Radiological Society of North America, Inc.

[25]  S. Kaler,et al.  Brachial artery aneurysms in Menkes disease. , 2006, The Journal of pediatrics.

[26]  J. Sundberg,et al.  Role of COL4A1 in small-vessel disease and hemorrhagic stroke. , 2006, The New England journal of medicine.

[27]  Oded Gonen,et al.  Dilated perivascular spaces: hallmarks of mild traumatic brain injury. , 2005, AJNR. American journal of neuroradiology.

[28]  F Barkhof,et al.  Enlarged Virchow-Robin spaces: do they matter? , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[29]  J. K. Smith,et al.  Brain MRI findings in patients with mucopolysaccharidosis types I and II and mild clinical presentation , 2004, Neuroradiology.

[30]  J. Thammaroj,et al.  VEIN OF GALEN MALFORMATIONS , 2003, Journal of neurology, neurosurgery, and psychiatry.

[31]  P. Massin,et al.  Hereditary infantile hemiparesis, retinal arteriolar tortuosity, and leukoencephalopathy , 2003, Neurology.

[32]  M. Baumgartner,et al.  Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding delta(1)-pyrroline-5-carboxylate synthase. , 2000, Human molecular genetics.

[33]  K. terBrugge,et al.  Tortuous, engorged pial veins in intracranial dural arteriovenous fistulas: correlations with presentation, location, and MR findings in 122 patients. , 1999, AJNR. American journal of neuroradiology.

[34]  D. Prayer,et al.  Virchow-Robin spaces in childhood migraine , 1999, Neuroradiology.

[35]  O. Kim,et al.  Intracranial and extracranial MR angiography in Menkes disease , 1997, Pediatric Radiology.

[36]  S. Levine,et al.  Cerebrovascular complications of Fabry's disease , 1996, Annals of neurology.

[37]  F. Bros.,et al.  Cerebral blood flow and metabolism, L Edvinsson, E Mackenzie, J McCulloch. Raven Press, Paris (1993) , 1994 .

[38]  N. Rollins,et al.  Prevalence and clinical significance of dilated Virchow-Robin spaces in childhood. , 1993, Radiology.

[39]  R O Weller,et al.  Pathways of Fluid Drainage from the Brain ‐ Morphological Aspects and Immunological Significance in Rat and Man , 1992, Brain pathology.

[40]  R O Weller,et al.  Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. , 1990, Journal of anatomy.

[41]  R. Weller,et al.  Anatomical relationships of the pia mater to cerebral blood vessels in man. , 1986, Journal of neurosurgery.

[42]  R. Carare,et al.  Lymphatic drainage of the brain and the pathophysiology of neurological disease , 2008, Acta Neuropathologica.

[43]  D. C. Henckel,et al.  Case report. , 1995, Journal.

[44]  D. H. Padget,et al.  The development of the cranial arteries in the human embryo. , 1948 .