BiCMOS-Based Compensation: Toward Fully Curvature-Corrected Bandgap Reference Circuits

We present a novel BiCMOS-based temperature compensation technique aiming at complete correction of the curvature in the temperature response of bandgap references. The source of the appearance of this curvature is because the well-known nonlinear term <inline-formula> <tex-math notation="LaTeX">$T\ln (T)$ </tex-math></inline-formula> in the base–emitter voltage (<inline-formula> <tex-math notation="LaTeX">$V_{BE}$ </tex-math></inline-formula>) is not completely canceled across all temperature points. Here, we show that the gate-source voltage (<inline-formula> <tex-math notation="LaTeX">$V_{GS}$ </tex-math></inline-formula>) of a subthreshold-operating MOSFET, biased with a proportional to absolute temperature current, also exhibits the <inline-formula> <tex-math notation="LaTeX">$T\ln (T)$ </tex-math></inline-formula> nonlinear temperature dependence. We leverage the existence of <inline-formula> <tex-math notation="LaTeX">$T\ln (T)$ </tex-math></inline-formula> in the temperature response of <inline-formula> <tex-math notation="LaTeX">$V_{GS}$ </tex-math></inline-formula> to directly cancel the nonlinear term <inline-formula> <tex-math notation="LaTeX">$T\ln (T)$ </tex-math></inline-formula> in <inline-formula> <tex-math notation="LaTeX">$V_{BE}$ </tex-math></inline-formula>. A theoretical analysis of the proposed compensation approach is presented. As a proof of concept, a current-mode voltage reference circuit, utilizing the proposed approach, is designed in IBM’s 8HP Silicon–Germanium (SiGe) BiCMOS technology. Thermal characteristics of the compensation components are examined through extensive simulations and are also experimentally evaluated, for the first time. Measurement results of the reference circuit show that the circuit outperforms the temperature performance of the state-of-the-art SiGe reference circuits. Possible origins of observed temperature dependences and mitigation techniques are discussed. The proposed compensation approach can be realized in any BiCMOS/CMOS technology for implementing either current-mode or voltage-mode high precision reference circuits.

[1]  Ka Nang Leung,et al.  Design of a 1.5-V high-order curvature-compensated CMOS bandgap reference , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[2]  Y. Tsividis,et al.  Accurate Analysis of Temperature Effects in / cl / BE Characteristics with Application to Bandgap Reference Sources , 1980 .

[3]  I. Filanovsky,et al.  Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits , 2001 .

[4]  Nobutaka Kuroki,et al.  1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs , 2013, IEEE Journal of Solid-State Circuits.

[5]  Robert F. Pierret,et al.  Semiconductor device fundamentals , 1996 .

[6]  Melanie Hartmann,et al.  Design Of Analog Cmos Integrated Circuits , 2016 .

[7]  Laleh Najafizadeh,et al.  Optimization of SiGe bandgap-based circuits for up to 300 °C operation , 2011 .

[8]  Ze-kun Zhou,et al.  A 1.6-V 25-µ A 5-ppm/°C Curvature-Compensated Bandgap Reference , 2012, IEEE Trans. Circuits Syst. I Regul. Pap..

[9]  G. Palumbo,et al.  A low-voltage low-power voltage reference based on subthreshold MOSFETs , 2003, IEEE J. Solid State Circuits.

[10]  M. Turowski,et al.  Single Event Transient Response of SiGe Voltage References and Its Impact on the Performance of Analog and Mixed-Signal Circuits , 2009, IEEE Transactions on Nuclear Science.

[11]  Kofi A. A. Makinwa,et al.  A single-trim CMOS bandgap reference with a 3σ inaccuracy of ±0.15% from −40°C to 125°C , 2011, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[12]  Ye Yi-zheng,et al.  A novel piecewise curvature-corrected CMOS bandgap reference , 2008, 2008 7th International Caribbean Conference on Devices, Circuits and Systems.

[13]  Masashi Horiguchi,et al.  A sub-1V 3.9µW bandgap reference with a 3σ inaccuracy of ±0.34% from −50°C to +150°C using piecewise-linear-current curvature compensation , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[14]  A.-J. Annema,et al.  Low-power bandgap references featuring DTMOSTs , 1999, Proceedings of the 24th European Solid-State Circuits Conference.

[15]  Devrim Yilmaz Aksin,et al.  Design of a curvature-corrected bandgap reference with 7.5ppm/C temperature coefficient in 0.35µm CMOS process , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[16]  Kevin Chen,et al.  Circuits and System Design of RF Polar Transmitters Using Envelope-Tracking and SiGe Power Amplifiers for Mobile WiMAX , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Zekun Zhou,et al.  An All-MOSFET Sub-1-V Voltage Reference With a —51 –dB PSR up to 60 MHz , 2017, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[18]  S.P. Voinigescu,et al.  A 35-GS/s, 4-Bit Flash ADC With Active Data and Clock Distribution Trees , 2009, IEEE Journal of Solid-State Circuits.

[19]  Wei-Chih Chen,et al.  A Sub-1 ppm/°C Precision Bandgap Reference With Adjusted-Temperature-Curvature Compensation , 2017, IEEE Transactions on Circuits and Systems Part 1: Regular Papers.

[20]  K. Leung,et al.  A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device , 2002, IEEE J. Solid State Circuits.

[21]  Ze-kun Zhou,et al.  A High-Precision Compensated CMOS Bandgap Voltage Reference Without Resistors , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  Jinghu Li,et al.  A 1.2-V Piecewise Curvature-Corrected Bandgap Reference in 0.5 $\mu$m CMOS Process , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[23]  Ming-Dou Ker,et al.  New Curvature-Compensation Technique for CMOS Bandgap Reference With Sub-1-V Operation , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[24]  Degang Chen,et al.  A self-calibrated bandgap voltage reference with 0.5 ppm//spl deg/C temperature coefficient , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[25]  Franco Maloberti,et al.  An improved bandgap reference with high power supply rejection , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[26]  C. Ulaganathan,et al.  SiGe BiCMOS Precision Voltage References for Extreme Temperature Range Electronics , 2006, 2006 Bipolar/BiCMOS Circuits and Technology Meeting.

[27]  Chun Cheung,et al.  A multi-piecewise curvature-corrected technique for bandgap reference circuits , 2013, 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS).

[28]  Wei Shu,et al.  A 5.6 ppm/°C Temperature Coefficient, 87-dB PSRR, Sub-1-V Voltage Reference in 65-nm CMOS Exploiting the Zero-Temperature-Coefficient Point , 2017, IEEE Journal of Solid-State Circuits.

[29]  M. Bellini,et al.  Proton Tolerance of SiGe Precision Voltage References for Extreme Temperature Range Electronics , 2006, IEEE Transactions on Nuclear Science.

[30]  G. Sambasiva Rao,et al.  A Novel FGMOS Voltage Reference with Temperature and Power Supply Compensation , 2012 .

[31]  Peter Ashburn,et al.  Silicon‐Germanium Heterojunction Bipolar Transistors , 2004 .

[32]  Chun Cheung,et al.  A low temperature coefficient voltage reference utilizing BiCMOS compensation technique , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[33]  C. Fiocchi,et al.  Curvature compensated BiCMOS bandgap with 1 V supply voltage , 2001, Proceedings of the 26th European Solid-State Circuits Conference.

[34]  Laleh Najafizadeh,et al.  A simple voltage reference using transistor with ZTC point and PTAT current source , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[35]  J. H. Huijsing,et al.  A curvature-corrected low-voltage bandgap reference , 1993 .

[36]  Hong-Yi Huang,et al.  Piecewise linear curvature-compensated CMOS bandgap reference , 2008, 2008 15th IEEE International Conference on Electronics, Circuits and Systems.

[37]  Laleh Najafizadeh,et al.  Towards a sub-1 V CMOS voltage reference , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[38]  Julius Georgiou,et al.  An all-subthreshold, 0.75V supply, 2ppm/°C, CMOS Voltage Reference , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[39]  Laleh Najafizadeh,et al.  A Precision SiGe Reference Circuit Utilizing Si and SiGe Bandgap Voltage Differences , 2017, IEEE Transactions on Electron Devices.

[40]  Y. Amemiya,et al.  A 300 nW, 15 ppm/$^{\circ}$C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs , 2009, IEEE Journal of Solid-State Circuits.

[41]  Hou-Ming Chen,et al.  A new temperature-compensated CMOS bandgap reference circuit for portable applications , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[42]  Chia-Wei Chang,et al.  A Low-Power CMOS Voltage Reference Circuit Based On Subthreshold Operation , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[43]  Fengqi Yu,et al.  A Novel 1.2–V 4.5-ppm/°C Curvature-Compensated CMOS Bandgap Reference , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[44]  Hsin-Shu Chen,et al.  A 1.5-V 10-ppm//spl deg/C 2nd-order curvature-compensated CMOS bandgap reference with trimming , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[45]  Randall L. Geiger,et al.  A curvature compensation technique for bandgap voltage references using adaptive reference temperature , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[46]  Albert Wang,et al.  A 3 V 110 μW 3.1 ppm/°C curvature-compensated CMOS bandgap reference , 2006 .

[47]  C. S. Webster,et al.  Measured results on bandgap reference in SiGe BiCMOS , 1998 .

[48]  K A Moen,et al.  Accurate Modeling of Single-Event Transients in a SiGe Voltage Reference Circuit , 2011, IEEE Transactions on Nuclear Science.

[49]  Laleh Najafizadeh,et al.  Single-Event Transient and Total Dose Response of Precision Voltage Reference Circuits Designed in a 90-nm SiGe BiCMOS Technology , 2014, IEEE Transactions on Nuclear Science.

[50]  Maria Teresa Sanz,et al.  A bandgap voltage reference in 0.18µm CMOS technology , 2013, 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS).

[51]  Gyudong Kim,et al.  Exponential curvature-compensated BiCMOS bandgap references , 1994, IEEE J. Solid State Circuits.

[52]  T. R. Viswanathan,et al.  A Low-Supply-Voltage CMOS Sub-Bandgap Reference , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[53]  Tor Sverre Lande,et al.  A Sub-Bandgap Reference Circuit With an Inherent Curvature-Compensation Property , 2014 .

[54]  Fan Chen,et al.  Silicon-Germanium Heterojunction Bipolar Transistors , 2002 .

[55]  J. Fraden,et al.  Handbook of Modern Sensors: Physics, Designs, and Applications, 2nd ed. , 1998 .

[56]  J.D. Cressler,et al.  Sub-1-K Operation of SiGe Transistors and Circuits , 2009, IEEE Electron Device Letters.

[57]  Haigang Yang,et al.  A novel low voltage Subtracting BandGap Reference with temperature coefficient of 2.2 ppm/° , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[58]  Andrea Bevilacqua,et al.  Design of Low-Noise $K$-Band SiGe Bipolar VCOs: Theory and Implementation , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[59]  P.R. Gray,et al.  A precision curvature-compensated CMOS bandgap reference , 1983, IEEE Journal of Solid-State Circuits.

[60]  Gabriel A. Rincon-Mora,et al.  A 1.1-V current-mode and piecewise-linear curvature-corrected bandgap reference , 1998, IEEE J. Solid State Circuits.

[61]  Ka Nang Leung,et al.  A 2-V 23-μA 5.3-ppm/°C curvature-compensated CMOS bandgap voltage reference , 2003, IEEE J. Solid State Circuits.

[62]  Kofi A. A. Makinwa,et al.  A single-trim CMOS bandgap reference with a 3σ inaccuracy of ±0.15% from -40°C to 125°C , 2010, ISSCC.

[63]  Bongim Jun,et al.  A Comparison of the Effects of X-Ray and Proton Irradiation on the Performance of SiGe Precision Voltage References , 2007, IEEE Transactions on Nuclear Science.

[64]  Jacob Fraden,et al.  Handbook of modern sensors , 1997 .

[65]  Julius Georgiou,et al.  A Novel Wide-Temperature-Range, 3.9 ppm/$^{\circ}$C CMOS Bandgap Reference Circuit , 2012, IEEE Journal of Solid-State Circuits.

[66]  Chun Cheung,et al.  A curvature-compensation technique based on the difference of Si and SiGe junction voltages for bandgap voltage circuits , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[67]  Laleh Najafizadeh,et al.  A monolithic, wide-temperature, charge amplification channel for extreme environments , 2010, 2010 IEEE Aerospace Conference.

[68]  Xiao Liang Tan,et al.  A Sub-1-V 65-nm MOS Threshold Monitoring-Based Voltage Reference , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[69]  D.M. Binkley,et al.  Tradeoffs and Optimization in Analog CMOS Design , 2008, 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems.

[70]  Jeongjin Roh,et al.  A 1.2-V 4.2- ppm°C High-Order Curvature-Compensated CMOS Bandgap Reference. , 2015 .

[71]  Allan H. Johnston,et al.  Degradation of precision reference devices in space environments , 1997 .

[72]  Yintang Yang,et al.  A 0.45-V, 14.6-nW CMOS Subthreshold Voltage Reference With No Resistors and No BJTs , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[73]  Gabriel A. Rincon-Mora,et al.  Voltage References: From Diodes to Precision High-Order Bandgap Circuits , 2001 .

[74]  John D. Cressler,et al.  Temperature Scalable Modeling of SiGe HBT DC Currents Down to 43K , 2006 .