Transient Stellar Collisions as Multimessenger Probes: Nonthermal, Gravitational-wave Emission and the Cosmic Ladder Argument

In dense stellar clusters like galactic nuclei and globular clusters, stellar densities are so high that stars might physically collide with each other. In galactic nuclei the energy and power output can be close to, and even exceed, those from supernovae events. We address the event rate and the electromagnetic characteristics of collisions of main-sequence stars (MS) and red giants (RGs). We also investigate the case in which the cores form a binary and emit gravitational waves. In the case of RGs, this is particularly interesting because the cores are degenerate. We find that MS event rate can be as high as tens per year, and that of RGs 1 order of magnitude larger. The collisions are powerful enough to mimic supernovae or tidal disruptions events. We find Zwicky Transient Facility observational data that seem to exhibit the features we describe. The cores embedded in the gaseous debris experience a friction force that has an impact on the chirping mass of the gravitational wave. As a consequence, the two small cores in principle mimic two supermassive black holes merging. However, their evolution in frequency along with the precedent electromagnetic burst and the ulterior afterglow are efficient tools to reveal the impostors. In the particular case of RGs, we derive the properties of the degenerate He cores and their H-burning shells to analyze the formation of the binaries. The merger is such that it can be misclassified with SN Ia events. Because the masses and densities of the cores are so dissimilar in values depending on their evolutionary stage, the argument about standard candles and cosmic ladder should be reevaluated.

[1]  R. Klessen,et al.  Stellar collisions in flattened and rotating Population III star clusters , 2021, 2104.01451.

[2]  M. Davies,et al.  Close stellar encounters at the Galactic Centre – I. The effect on the observed stellar populations , 2021, 2104.00686.

[3]  E. Ramirez-Ruiz,et al.  The Art of Modeling Stellar Mergers and the Case of the B[e] Supergiant R4 in the Small Magellanic Cloud , 2020, The Astrophysical Journal.

[4]  Peng Peng,et al.  Fake Massive Black Holes in the Milli-Hertz Gravitational-wave Band , 2020, The Astrophysical Journal.

[5]  S. Babak,et al.  Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart , 2020, The Astrophysical Journal.

[6]  B. Katz,et al.  An asymmetric explosion mechanism may explain the diversity of Si ii linewidths in Type Ia supernovae , 2019, 1912.04313.

[7]  L. Mayer,et al.  Improved gravitational radiation time-scales: significance for LISA and LIGO-Virgo sources , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  Xian Chen,et al.  Retrieving the True Masses of Gravitational Wave Sources , 2019, Proceedings.

[9]  A. Burkert,et al.  Three-dimensional simulations of clump formation in stellar wind collisions , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  E. Ramirez-Ruiz,et al.  The Evolution of Binaries in a Gaseous Medium: Three-dimensional Simulations of Binary Bondi–Hoyle–Lyttleton Accretion , 2019, The Astrophysical Journal.

[11]  B. Katz,et al.  Type Ia supernovae have two physical width–luminosity relations and they favour sub-Chandrasekhar and direct collision models - II. Colour evolution , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  J. Prieto,et al.  A significantly off-centre 56Ni distribution for the low-luminosity type Ia supernova SN 2016brx from the 100IAS survey , 2018, 1805.00010.

[13]  M. Hilker,et al.  A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters , 2018, 1804.08359.

[14]  B. Katz,et al.  Type Ia supernovae have two physical width–luminosity relations and they favour sub-Chandrasekhar and direct collision models – I. Bolometric , 2017, Monthly Notices of the Royal Astronomical Society.

[15]  M. Seigar,et al.  Updating the (Supermassive Black Hole Mass) - (Spiral Arm Pitch Angle) Relation: A Strong Correlation for Galaxies with Pseudobulges , 2017, 1707.04001.

[16]  P. Amaro-Seoane,et al.  The distribution of stars around the Milky Way's central black hole. I. Deep star counts , 2017, 1701.03816.

[17]  P. Amaro-Seoane,et al.  The distribution of stars around the Milky Way's central black hole II: Diffuse light from sub-giants and dwarfs , 2017, 1701.03817.

[18]  P. Amaro-Seoane,et al.  The distribution of stars around the Milky Way's black hole III: Comparison with simulations , 2017, 1701.03818.

[19]  N. Neumayer,et al.  The nuclear cluster of the Milky Way: our primary testbed for the interaction of a dense star cluster with a massive black hole , 2014, 1411.4504.

[20]  Y. Hoffman,et al.  The Laniakea supercluster of galaxies , 2014, Nature.

[21]  J. Prieto,et al.  Type Ia supernovae with bimodal explosions are common – possible smoking gun for direct collisions of white dwarfs , 2014, 1401.3347.

[22]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies , 2013, 1308.6483.

[23]  A. Gal-yam Luminous Supernovae , 2012, Science.

[24]  A. Merloni,et al.  Mass Functions of Supermassive Black Holes across Cosmic Time , 2011, 1112.1430.

[25]  Tod R. Lauer,et al.  Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies , 2011, Nature.

[26]  N. Neumayer,et al.  Nuclear star clusters , 2009, The Astronomy and Astrophysics Review.

[27]  M. Davies,et al.  Red giant stellar collisions in the Galactic Centre , 2008, 0811.3111.

[28]  Eric Poisson,et al.  Gravitational Waves, Volume 1: Theory and Experiments , 2008 .

[29]  Charles E. Hansen,et al.  SN 2006gy: Discovery of the Most Luminous Supernova Ever Recorded, Powered by the Death of an Extremely Massive Star like η Carinae , 2006, astro-ph/0612617.

[30]  H. Trac,et al.  A comparison of hydrodynamic techniques for modelling collisions between main-sequence stars , 2006, astro-ph/0605753.

[31]  Rainer Spurzem,et al.  N-Body Growth of a Bahcall-Wolf Cusp around a Black Hole , 2004, astro-ph/0406324.

[32]  M. Freitag,et al.  A comprehensive set of simulations of high-velocity collisions between main-sequence stars , 2004, astro-ph/0403621.

[33]  M. Davies,et al.  On the origin of red giant depletion through low-velocity collisions , 2004 .

[34]  P. Amaro-Seoane,et al.  Accretion of stars on to a massive black hole: a realistic diffusion model and numerical studies , 2004, astro-ph/0401163.

[35]  A. P. Thrall,et al.  Modelling collision products of triple-star mergers , 2003, astro-ph/0307061.

[36]  Frederic A. Rasio,et al.  Stellar Collisions and the Interior Structure of Blue Stragglers , 2001, astro-ph/0107388.

[37]  M. Freitag,et al.  A new Monte Carlo code for star cluster simulations - I. Relaxation , 2001, astro-ph/0102139.

[38]  A. Brandenburg,et al.  Dynamical friction of bodies orbiting in a gaseous sphere , 2000, astro-ph/0010003.

[39]  A. Brandenburg,et al.  Deceleration by Dynamical Friction in a Gaseous Medium , 1999 .

[40]  M. Davies,et al.  Red giant collisions in the Galactic Centre , 1999, astro-ph/9907309.

[41]  M. Davies,et al.  The destructive effects of binary encounters on red giants in the Galactic Centre , 1998 .

[42]  Eve C. Ostriker,et al.  Dynamical Friction in a Gaseous Medium , 1998, astro-ph/9810324.

[43]  S. Shapiro,et al.  Collisions of main-sequence stars and the formation of blue stragglers in globular clusters , 1995, astro-ph/9511074.

[44]  Jr.,et al.  On blue straggler formation by direct collisions of main sequence stars , 1995, astro-ph/9502106.

[45]  E. Phinney,et al.  Dynamics and Interactions of Binaries and Neutron Stars in Globular Clusters , 1994, astro-ph/9412078.

[46]  P. Wood,et al.  Evolution of Low- and Intermediate-Mass Stars to the End of the Asymptotic Giant Branch with Mass Loss , 1993 .

[47]  S. Shapiro,et al.  Collisions and close encounters between massive main-sequence stars , 1993 .

[48]  W. Benz,et al.  Three-dimensional hydrodynamical simulations of colliding stars. III: Collisions and tidal captures of unequal-mass main-sequence stars , 1992 .

[49]  R. Cannon,et al.  A conjecture regarding the evolution of dwarf stars into red giants , 1991 .

[50]  W. Benz,et al.  Stellar encounters involving red giants in globular cluster cores , 1991 .

[51]  P. Leonard,et al.  On the Origin of the Blue Stragglers in the Globular Cluster NGC 5053 , 1991 .

[52]  Richard H. Durisen,et al.  Dynamical and luminosity evolution of active galactic nuclei - Models with a mass spectrum , 1991 .

[53]  J. Huchra,et al.  Mapping the Universe , 1989, Science.

[54]  P. Leonard Stellar Collisions in Globular Clusters and the Blue Straggler Problem , 1989 .

[55]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[56]  W. Benz,et al.  Three-dimensional hydrodynamical simulations of stellar collisions. I - Equal-mass main-sequence stars , 1987 .

[57]  R. Durisen,et al.  The Evolution of Active Galactic Nuclei. II. Models with Stellar Evolution , 1987 .

[58]  R. Durisen,et al.  The Evolution of Active Galactic Nuclei. I. Models without Stellar Evolution , 1987 .

[59]  S. L. Shapiro,et al.  The collapse of dense star clusters to supermassive black holes: the origin of quasars and AGNs , 1985 .

[60]  A. Marchant,et al.  Star clusters containing massive, central black holes. II. Self-consistent potentials. , 1979 .

[61]  S. L. Shapiro,et al.  Star clusters containing massive, central black holes. III - Evolution calculations , 1979 .

[62]  S. L. Shapiro,et al.  Star clusters containing massive, central black holes: Monte Carlo simulations in two-dimensional phase space , 1978 .

[63]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[64]  A. Fabian X-ray source counts and the X-ray background from Uhuru. , 1975 .

[65]  P. J. E. Peebles,et al.  Star Distribution Near a Collapsed Object , 1972 .

[66]  Peter P. Eggleton,et al.  The Evolution of low mass stars , 1971 .

[67]  J. D. Fernie,et al.  THE PERIOD-LUMINOSITY RELATION: A HISTORICAL REVIEW , 1969 .

[68]  J. Mathis NUCLEAR REACTIONS DURING STELLAR COLLISIONS. , 1966 .

[69]  L. Spitzer,et al.  On the Evolution of Galactic Nuclei , 1966 .

[70]  W. Baade,et al.  The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula , 1944 .

[71]  Subrahmanyan Chandrasekhar,et al.  Dynamical friction. I. General considerations: the coefficient of dynamical friction , 1943 .

[72]  S. Chandrasekhar,et al.  On the Evolution of the Main-Sequence Stars. , 1942 .

[73]  W. Mccrea An Introduction to the Study of Stellar Structure , 1939, Nature.

[74]  A. Eddington On the Relation between the Masses and Luminosities of the Stars.: (Plate 8.) , 1924 .

[75]  H. Shapley,et al.  No. 92. On the nature and cause of Cepheid variation. , 1914 .

[76]  D. Kakkad Radiative Processes in Astrophysics , 2014 .

[77]  D. Mardones,et al.  The Role of Gas in the Merging of Massive Black Holes in Galactic Nuclei. I. Black Hole Merging in a Spherical Gas Cloud , 2004 .

[78]  Jeremiah P. Ostriker,et al.  Dynamical Evolution of Globular Clusters , 1996 .

[79]  Charles D. Bailyn,et al.  Blue Stragglers and Other Stellar Anomalies: Implications for the Dynamics of Globular Clusters , 1995 .

[80]  I. Iben,et al.  More solar models and neutrino fluxes. , 1971 .

[81]  R. Sanders The Effects of Stellar Collisions in Dense Stellar Systems , 1970 .