Control parameter estimation in a semi-linear parabolic inverse problem using a high accurate method

Abstract Parabolic inverse problems have an important role in many branches of science and technology. The aim of this research work is to solve these classes of equations using a high order compact finite difference scheme. We consider the following inverse problem for finding u ( x ,  t ) and p ( t ) governed by u t  =  u xx  +  p ( t ) u  +  φ ( x ,  t ) with an over specified condition inside the domain. Spatial derivatives are approximated using central difference scheme. The time advancement of the simulation is performed using a “third order compact Runge–Kutta method”. The convergence orders for the approximation of both u and p are of o ( k 3  +  h 2 ) which improves the results obtained in the literature. An exact test case is used to evaluate the validity of our numerical analysis. We found that the accuracy of the results is better than that of previous works in the literature.

[1]  Zhi-Zhong Sun,et al.  On the stability and convergence of a difference scheme for an one-dimensional parabolic inverse problem , 2007, Appl. Math. Comput..

[2]  Mehdi Dehghan,et al.  Numerical solution of one-dimensional parabolic inverse problem , 2003, Appl. Math. Comput..

[3]  Mehdi Dehghan,et al.  High-order solution of one-dimensional sine-Gordon equation using compact finite difference and DIRKN methods , 2010, Math. Comput. Model..

[4]  Mehdi Dehghan,et al.  Identification of a time‐dependent coefficient in a partial differential equation subject to an extra measurement , 2005 .

[5]  Mehdi Dehghan,et al.  The use of Chebyshev cardinal functions for the solution of a partial differential equation with an unknown time-dependent coefficient subject to an extra measurement , 2010, J. Comput. Appl. Math..

[6]  Mehdi Dehghan,et al.  Finding a control parameter in one-dimensional parabolic equations , 2003, Appl. Math. Comput..

[7]  John A. MacBain,et al.  Existence and uniqueness properties for the one‐dimensional magnetotellurics inversion problem , 1986 .

[8]  Mehdi Dehghan,et al.  An inverse problem of finding a source parameter in a semilinear parabolic equation , 2001 .

[9]  John R. Cannon,et al.  On a class of nonlinear parabolic equations with nonlinear trace type functionals , 1991 .

[10]  Yanping Lin,et al.  A finite-difference solution to an inverse problem for determining a control function in a parabolic partial differential equation , 1989 .

[11]  Yanping Lin,et al.  Determination of source parameter in parabolic equations , 1992 .

[12]  M. Dehghan,et al.  High-order compact solution of the one-dimensional heat and advection–diffusion equations , 2010 .

[13]  Mehdi Dehghan Determination of a control function in three-dimensional parabolic equations , 2003, Math. Comput. Simul..

[14]  Mehdi Dehghan,et al.  Method of lines solutions of the parabolic inverse problem with an overspecification at a point , 2009, Numerical Algorithms.

[15]  Daoud S. Daoud,et al.  A splitting up algorithm for the determination of the control parameter in multi dimensional parabolic problem , 2005, Appl. Math. Comput..

[16]  Mehdi Dehghan,et al.  Parameter determination in a partial differential equation from the overspecified data , 2005, Math. Comput. Model..

[17]  Mehdi Dehghan Determination of a control parameter in the two-dimensional diffusion equation , 2001 .

[18]  Mehdi Dehghan,et al.  A Tau Method for the One-Dimensional Parabolic Inverse Problem Subject to Temperature Overspecification , 2006, Comput. Math. Appl..

[19]  John A. Macbain,et al.  Inversion theory for parameterized diffusion problem , 1987 .

[20]  Ameneh Taleei,et al.  A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients , 2010, Comput. Phys. Commun..

[21]  Mehdi Dehghan,et al.  Fourth-order compact solution of the nonlinear Klein-Gordon equation , 2009, Numerical Algorithms.

[22]  Yanping Lin,et al.  An inverse problem of finding a parameter in a semi-linear heat equation , 1990 .

[23]  M. Y. Hussaini,et al.  Numerical experiments in boundary-layer stability , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  John R. Cannon,et al.  A class of non-linear non-classical parabolic equations , 1989 .

[25]  Yanping Lin,et al.  Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equations , 1994 .