Temporal analysis of the flow from V1 to the extrastriate cortex in humans.

We previously examined the cortical processing in response to somatosensory, auditory and noxious stimuli, using magnetoencephalography in humans. Here, we performed a similar analysis of the processing in the human visual cortex for comparative purposes. After flash stimuli applied to the right eye, activations were found in eight cortical areas: the left medial occipital area around the calcarine fissure (primary visual cortex, V1), the left dorsomedial area around the parietooccipital sulcus (DM), the ventral (MOv) and dorsal (MOd) parts of the middle occipital area of bilateral hemispheres, the left temporo-occipito-parietal cortex corresponding to human MT/V5 (hMT), and the ventral surface of the medial occipital area (VO) of the bilateral hemispheres. The mean onset latencies of each cortical activity were (in ms): 27.5 (V1), 31.8 (DM), 32.8 (left MOv), 32.2 (right MOv), 33.4 (left MOd), 32.3 (right MOv), 37.8 (hMT), 46.9 (left VO), and 46.4 (right VO). Therefore the cortico-cortical connection time of visual processing at the early stage was 4-6 ms, which is very similar to the time delay between sequential activations in somatosensory and auditory processing. In addition, the activities in V1, MOd, DM, and hMT showed a similar biphasic waveform with a reversal of polarity after 10 ms, which is a common activation profile of the cortical activity for somatosensory, auditory, and pain-evoked responses. These results suggest similar mechanisms of the serial cortico-cortical processing of sensory information among all sensory areas of the cortex.

[1]  J. Kaas,et al.  The dorsomedial cortical visual area: a third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). , 1975 .

[2]  M G Rosa,et al.  Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti). , 1997, Journal of neurophysiology.

[3]  G. V. Simpson,et al.  Flow of activation from V1 to frontal cortex in humans , 2001, Experimental Brain Research.

[4]  J. Allman,et al.  The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (aotus trivirgatus) , 1975, Brain Research.

[5]  J. M. Hupé,et al.  Conduction Velocities V 1 and V 2 of the Monkey Have Similar Rapid Feedforward and Feedback Connections Between Areas , .

[6]  C E Schroeder,et al.  Electrophysiological evidence for overlapping dominant and latent inputs to somatosensory cortex in squirrel monkeys. , 1995, Journal of neurophysiology.

[7]  K. Rockland,et al.  Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey. , 1992, Cerebral cortex.

[8]  S. Hillyard,et al.  Cortical sources of the early components of the visual evoked potential , 2002, Human brain mapping.

[9]  K. Rockland,et al.  Laminar distribution of neurons projecting from area V1 to V2 in macaque and squirrel monkeys. , 1992, Cerebral cortex.

[10]  E. Fetz,et al.  Intracortical connectivity revealed by spike-triggered averaging in slice preparations of cat visual cortex , 1988, Brain Research.

[11]  A. Ducati,et al.  Neuronal generators of the visual evoked potentials: intracerebral recording in awake humans. , 1988, Electroencephalography and clinical neurophysiology.

[12]  P A Salin,et al.  Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. , 1992, Journal of neurophysiology.

[13]  K. Tanaka,et al.  Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. , 1981, Journal of neurophysiology.

[14]  Jon H Kaas,et al.  The organization of sensory cortex , 2001, Current Opinion in Neurobiology.

[15]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[16]  Koji Inui,et al.  Timing of early activity in the visual cortex as revealed by simultaneous MEG and ERG recordings , 2006, NeuroImage.

[17]  C. Gross,et al.  Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  E. Callaway,et al.  Functional Streams and Local Connections of Layer 4C Neurons in Primary Visual Cortex of the Macaque Monkey , 1998, The Journal of Neuroscience.

[19]  R. Hari,et al.  Stronger occipital cortical activation to lower than upper visual field stimuli Neuromagnetic recordings , 1999, Experimental Brain Research.

[20]  K. Martin,et al.  Connection from cortical area V2 to V3A in macaque monkey , 2002, The Journal of comparative neurology.

[21]  J. Gallant,et al.  A Human Extrastriate Area Functionally Homologous to Macaque V4 , 2000, Neuron.

[22]  R. Hari,et al.  Coinciding early activation of the human primary visual cortex and anteromedial cuneus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  C. Schroeder,et al.  Effects of wavelength on the timing and laminar distribution of illuminance-evoked activity in macaque V1 , 1995, Visual Neuroscience.

[24]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[25]  T Landis,et al.  Electrophysiological evidence for fast visual processing through the human koniocellular pathway when stimuli move. , 2000, Cerebral cortex.

[26]  K. Rockland,et al.  Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey , 1990, Visual Neuroscience.

[27]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[28]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[29]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[30]  J. Kaas,et al.  Cortical connections of the dorsomedial visual area in prosimian primates , 1998, The Journal of comparative neurology.

[31]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[32]  J. Kaas,et al.  Some cortical projections of the dorsomedial visual area (DM) of association cortex in the owl monkey, Aotus trivirgatus , 1975, The Journal of comparative neurology.

[33]  R. Weller,et al.  Cortical connections of dorsal cortex rostral to V II in squirrel monkeys , 1991, The Journal of comparative neurology.

[34]  M. Gamberini,et al.  Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus) , 2005, The Journal of comparative neurology.

[35]  W. Cobb,et al.  The latency and form in man of the occipital potentials evoked by bright flashes , 1960, The Journal of physiology.

[36]  The early component of the visual evoked magnetic field. , 1995, Neuroreport.

[37]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[38]  C E Schroeder,et al.  Neural generators of early cortical somatosensory evoked potentials in the awake monkey. , 1995, Electroencephalography and clinical neurophysiology.

[39]  Chantal Delon-Martin,et al.  Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP source analysis , 2004, NeuroImage.

[40]  M Wagner,et al.  Fast visual evoked potential input into human area V5 , 1997, Neuroreport.

[41]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[42]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[43]  E. Halgren,et al.  Early discrimination of coherent versus incoherent motion by multiunit and synaptic activity in human putative MT+ , 2001, Human brain mapping.

[44]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  D. Jeffreys,et al.  Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin , 2004, Experimental Brain Research.

[47]  Yuka Kobayashi,et al.  The origins of pattern reversal short latency visual evoked potential as determined by dynamic topography and the dipole tracing method , 2005, Brain Topography.

[48]  G. L. Gerstein,et al.  Interactions between cat striate cortex neurons , 2004, Experimental Brain Research.

[49]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[50]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[51]  L. Cauller,et al.  Cerebral cortical somatosensory evoked responses, multiple unit activity and current source-densities: their interrelationships and significance to somatic sensation as revealed by stimulation of the awake monkey's hand , 2004, Experimental Brain Research.

[52]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[53]  J. Kaas,et al.  Cortical connections of the dorsomedial visual area in Old World macaque monkeys , 1999, The Journal of comparative neurology.

[54]  C. E. Schroeder,et al.  Contribution of extrastriate area V4 to the surface-recorded flash VEP in the awake macaque , 1994, Vision Research.

[55]  S. Petersen,et al.  Transient and sustained responses in four extrastriate visual areas of the owl monkey , 1988, Experimental Brain Research.

[56]  István Ulbert,et al.  Multiple microelectrode-recording system for human intracortical applications , 2001, Journal of Neuroscience Methods.

[57]  J. Kaas,et al.  Topographic patterns of V2 cortical connections in macaque monkeys , 1996, The Journal of comparative neurology.

[58]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[59]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Andreas A. Ioannides,et al.  Consistent and precise localization of brain activity in human primary visual cortex by MEG and fMRI , 2003, NeuroImage.

[61]  E. Callaway Local circuits in primary visual cortex of the macaque monkey. , 1998, Annual review of neuroscience.

[62]  K. Toyama,et al.  An intracellular study of neuronal organization in the visual cortex , 2004, Experimental Brain Research.

[63]  R. Kakigi,et al.  Serial and parallel processing in the human auditory cortex: a magnetoencephalographic study. , 2006, Cerebral cortex.

[64]  C. Schroeder,et al.  Somatosensory input to auditory association cortex in the macaque monkey. , 2001, Journal of neurophysiology.

[65]  R. Kakigi,et al.  Serial processing in the human somatosensory system. , 2004, Cerebral cortex.

[66]  G. V. Simpson,et al.  Cellular generators of the cortical auditory evoked potential initial component. , 1992, Electroencephalography and clinical neurophysiology.

[67]  C. Galletti,et al.  The cortical connections of area V6: an occipito‐parietal network processing visual information , 2001, The European journal of neuroscience.

[68]  L A Krubitzer,et al.  The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates , 1993, The Journal of comparative neurology.

[69]  S Zeki,et al.  Conscious visual perception without V1. , 1993, Brain : a journal of neurology.

[70]  R. Hari,et al.  Spatial resolution of neuromagnetic records: theoretical calculations in a spherical model. , 1988, Electroencephalography and clinical neurophysiology.

[71]  Christopher A Walsh,et al.  Genomic and evolutionary analyses of asymmetrically expressed genes in human fetal left and right cerebral cortex. , 2006, Cerebral cortex.

[72]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[74]  C. Galletti,et al.  The cortical visual area V6: brain location and visual topography , 1999, The European journal of neuroscience.

[75]  S. Supek,et al.  Simulation studies of multiple dipole neuromagnetic source localization: model order and limits of source resolution , 1993, IEEE Transactions on Biomedical Engineering.

[76]  Y. Iwamura Hierarchical somatosensory processing , 1998, Current Opinion in Neurobiology.

[77]  J. Kaas,et al.  The organization of the second visual area (V II) in the owl monkey: a second order transformation of the visual hemifield. , 1974, Brain research.

[78]  Santiago Arroyo,et al.  Neuronal Generators of Visual Evoked Potentials in Humans: Visual Processing in the Human Cortex , 1997, Epilepsia.

[79]  R Kakigi,et al.  A comparative magnetoencephalographic study of cortical activations evoked by noxious and innocuous somatosensory stimulations , 2003, Neuroscience.

[80]  H. Pratt,et al.  Short latency visual evoked potentials in man. , 1982, Electroencephalography and clinical neurophysiology.

[81]  A. Klistorner,et al.  Separate magnocellular and parvocellular contributions from temporal analysis of the multifocal VEP , 1997, Vision Research.

[82]  Koji Inui,et al.  Pain processing within the primary somatosensory cortex in humans , 2003, The European journal of neuroscience.

[83]  C. Schroeder,et al.  Striate cortical contribution to the surface-recorded pattern-reversal vep in the alert monkey , 1991, Vision Research.

[84]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[85]  John J. Foxe,et al.  Human–simian correspondence in the early cortical processing of multisensory cues , 2004, Cognitive Processing.

[86]  S. Zeki Representation of central visual fields in prestriate cortex of monkey. , 1969, Brain research.

[87]  G. Orban,et al.  Response latencies of visual cells in macaque areas V1, V2 and V5 , 1989, Brain Research.

[88]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[89]  Lawrence C. Sincich,et al.  Divided by Cytochrome Oxidase: A Map of the Projections from V1 to V2 in Macaques , 2002, Science.

[90]  G. Henry,et al.  Physiological studies on the feedback connection to the striate cortex from cortical areas 18 and 19 of the cat , 1988, Experimental Brain Research.

[91]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[92]  U. Mitzdorf,et al.  Functional anatomy of the inferior colliculus and the auditory cortex: current source density analyses of click-evoked potentials , 1984, Hearing Research.