Computational Mathematics, Numerical Analysis and Applications
暂无分享,去创建一个
[1] Eduardo Casas,et al. New regularity results and improved error estimates for optimal control problems with state constraints , 2014 .
[2] Kazufumi Ito,et al. Lagrange multiplier approach to variational problems and applications , 2008, Advances in design and control.
[3] Hector O. Fattorini,et al. Infinite Dimensional Optimization and Control Theory: References , 1999 .
[4] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..
[5] Alfred H. Schatz,et al. Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates , 1998, Math. Comput..
[6] Eduardo Casas,et al. Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations , 2011, Computational Optimization and Applications.
[7] A. H. Schatz,et al. On the quasi-optimality in _{∞} of the ¹-projection into finite element spaces , 1982 .
[8] Fredi Tröltzsch,et al. Second Order Analysis for Optimal Control Problems: Improving Results Expected From Abstract Theory , 2012, SIAM J. Optim..
[9] Xiaojun Chen,et al. Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..
[10] G. Stampacchia,et al. Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..
[11] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[12] E B Lee,et al. Foundations of optimal control theory , 1967 .
[13] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[14] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[15] J. Lions,et al. Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .
[16] Fredi Tröltzsch,et al. Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems , 2005, Comput. Optim. Appl..
[17] J. Warga. Optimal control of differential and functional equations , 1972 .
[18] Boris Vexler,et al. A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems , 2019, Constrained Optimization and Optimal Control for Partial Differential Equations.
[19] Johannes Pfefferer,et al. Superconvergence for Neumann boundary control problems governed by semilinear elliptic equations , 2013, Comput. Optim. Appl..
[20] Eduardo Casas. Error Estimates for the Numerical Approximation of Semilinear Elliptic Control Problems with Finitely Many State Constraints , 2002 .
[21] Fredi Tröltzsch,et al. Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..
[22] E. Casas. Pontryagin's Principle for State-Constrained Boundary Control Problems of Semilinear Parabolic Equations , 1997 .
[23] Fredi Troltzsch,et al. An SQP method for the optimal control of a nonlinear heat equation , 1994 .
[24] Jean-Pierre Raymond,et al. ESTIMATES FOR THE NUMERICAL APPROXIMATION OF DIRICHLET BOUNDARY CONTROL FOR SEMILINEAR ELLIPTIC EQUATIONS , 2006 .
[25] Eduardo Casas,et al. Second Order Analysis for Bang-Bang Control Problems of PDEs , 2012, SIAM J. Control. Optim..
[26] Arnd Rösch,et al. Optimal control in non-convex domains: a priori discretization error estimates , 2007 .
[27] Rolf Rannacher,et al. A Priori Error Estimates for Finite Element Discretizations of Parabolic Optimization Problems with Pointwise State Constraints in Time , 2011, SIAM J. Control. Optim..
[28] R. Temam,et al. Analyse convexe et problèmes variationnels , 1974 .
[29] Tomáš Roubíček,et al. Relaxation in Optimization Theory and Variational Calculus , 1997 .
[30] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[31] Eduardo Casas,et al. Error estimates for the numerical approximation of Neumann control problems , 2008, Comput. Optim. Appl..
[32] Eduardo Casas,et al. Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems , 2007, Adv. Comput. Math..
[33] Boris Vexler,et al. A priori error estimates for space–time finite element discretization of semilinear parabolic optimal control problems , 2011, Numerische Mathematik.
[34] J. M. Thomas,et al. Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .
[35] Arnd Rösch,et al. Superconvergence Properties of Optimal Control Problems , 2004, SIAM J. Control. Optim..
[36] E. Casas. Control of an elliptic problem with pointwise state constraints , 1986 .