Computational Mathematics, Numerical Analysis and Applications

[1]  Eduardo Casas,et al.  New regularity results and improved error estimates for optimal control problems with state constraints , 2014 .

[2]  Kazufumi Ito,et al.  Lagrange multiplier approach to variational problems and applications , 2008, Advances in design and control.

[3]  Hector O. Fattorini,et al.  Infinite Dimensional Optimization and Control Theory: References , 1999 .

[4]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[5]  Alfred H. Schatz,et al.  Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates , 1998, Math. Comput..

[6]  Eduardo Casas,et al.  Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations , 2011, Computational Optimization and Applications.

[7]  A. H. Schatz,et al.  On the quasi-optimality in _{∞} of the ¹-projection into finite element spaces , 1982 .

[8]  Fredi Tröltzsch,et al.  Second Order Analysis for Optimal Control Problems: Improving Results Expected From Abstract Theory , 2012, SIAM J. Optim..

[9]  Xiaojun Chen,et al.  Smoothing Methods and Semismooth Methods for Nondifferentiable Operator Equations , 2000, SIAM J. Numer. Anal..

[10]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[11]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[12]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[13]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[14]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[15]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[16]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems , 2005, Comput. Optim. Appl..

[17]  J. Warga Optimal control of differential and functional equations , 1972 .

[18]  Boris Vexler,et al.  A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems , 2019, Constrained Optimization and Optimal Control for Partial Differential Equations.

[19]  Johannes Pfefferer,et al.  Superconvergence for Neumann boundary control problems governed by semilinear elliptic equations , 2013, Comput. Optim. Appl..

[20]  Eduardo Casas Error Estimates for the Numerical Approximation of Semilinear Elliptic Control Problems with Finitely Many State Constraints , 2002 .

[21]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..

[22]  E. Casas Pontryagin's Principle for State-Constrained Boundary Control Problems of Semilinear Parabolic Equations , 1997 .

[23]  Fredi Troltzsch,et al.  An SQP method for the optimal control of a nonlinear heat equation , 1994 .

[24]  Jean-Pierre Raymond,et al.  ESTIMATES FOR THE NUMERICAL APPROXIMATION OF DIRICHLET BOUNDARY CONTROL FOR SEMILINEAR ELLIPTIC EQUATIONS , 2006 .

[25]  Eduardo Casas,et al.  Second Order Analysis for Bang-Bang Control Problems of PDEs , 2012, SIAM J. Control. Optim..

[26]  Arnd Rösch,et al.  Optimal control in non-convex domains: a priori discretization error estimates , 2007 .

[27]  Rolf Rannacher,et al.  A Priori Error Estimates for Finite Element Discretizations of Parabolic Optimization Problems with Pointwise State Constraints in Time , 2011, SIAM J. Control. Optim..

[28]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[29]  Tomáš Roubíček,et al.  Relaxation in Optimization Theory and Variational Calculus , 1997 .

[30]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[31]  Eduardo Casas,et al.  Error estimates for the numerical approximation of Neumann control problems , 2008, Comput. Optim. Appl..

[32]  Eduardo Casas,et al.  Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems , 2007, Adv. Comput. Math..

[33]  Boris Vexler,et al.  A priori error estimates for space–time finite element discretization of semilinear parabolic optimal control problems , 2011, Numerische Mathematik.

[34]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[35]  Arnd Rösch,et al.  Superconvergence Properties of Optimal Control Problems , 2004, SIAM J. Control. Optim..

[36]  E. Casas Control of an elliptic problem with pointwise state constraints , 1986 .