Hyperbolic Cross Approximation
暂无分享,去创建一个
[1] Michael Döhler,et al. Nonequispaced Hyperbolic Cross Fast Fourier Transform , 2010, SIAM J. Numer. Anal..
[2] D. B. Bazarkhanov,et al. Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I , 2010 .
[3] A. D. Izaak. Widths of Hölder-Nikol'skii classes and finite-dimensional subsets in spaces with mixed norm , 1996 .
[4] A. S. Romanyuk,et al. Approximation of the Besov classes of periodic functions of several variables in a space Lq , 1991 .
[5] M. Griebel,et al. Optimized Tensor-Product Approximation Spaces , 2000 .
[6] H. Yserentant. Regularity and Approximability of Electronic Wave Functions , 2010 .
[7] S. B. Stechkin. On absolute convergence of orthogonal series. I. , 1953 .
[8] Vladimir Temlyakov. APPROXIMATION OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES BY BILINEAR FORMS , 1987 .
[9] V. N. Temlyakov,et al. Constructive Sparse Trigonometric Approximation for Functions with Small Mixed Smoothness , 2015, 1503.00282.
[10] W. Sickel,et al. The Smolyak Algorithm, Sampling on Sparse Grids and Function Spaces of Dominating Mixed Smoothness , 2007 .
[11] Dinh Dung,et al. High-dimensional periodic sampling on Smolyak grids based on B-spline quasi-interpolation , 2015, 1502.01447.
[12] Hans Triebel. Faber Systems and Their Use in Sampling, Discrepancy, Numerical Integration , 2012 .
[13] Grzegorz W. Wasilkowski. Liberating the dimension for L2-approximation , 2012, J. Complex..
[14] Tino Ullrich,et al. Optimal cubature in Besov spaces with dominating mixed smoothness on the unit square , 2014, J. Complex..
[15] H. Wozniakowski,et al. Lattice Algorithms for Multivariate L∞ Approximation in the Worst-Case Setting , 2009 .
[16] S. K. Zaremba,et al. The extreme and L2 discrepancies of some plane sets , 1969 .
[17] Richard F. Bass. Probability Estimates for Multiparameter Brownian Processes , 1988 .
[18] N. Temirgaliev. Efficiency of numerical integration algorithms related to divisor theory in cyclotomic fields , 1997 .
[19] É. M. Galeev,et al. KOLMOGOROV WIDTHS OF CLASSES OF PERIODIC FUNCTIONS OF ONE AND SEVERAL VARIABLES , 1991 .
[20] Aicke Hinrichs,et al. Carl's inequality for quasi-Banach spaces , 2015, 1512.04421.
[21] Din' Zung,et al. ON THE RECOVERY AND ONE-SIDED APPROXIMATION OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES , 1991 .
[22] Vladimir Temlyakov. BRIEF COMMUNICATIONS: Quadrature formulae and recovery of number-theoretical nets from nodal values for classes of functions with small degree of smoothness , 1985 .
[23] Endre Süli,et al. Sparse finite element approximation of high-dimensional transport-dominated diffusion problems , 2008 .
[24] Winfried Sickel,et al. Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in Hγ , 2014, J. Approx. Theory.
[25] B. S. Kashin,et al. On a norm and approximate characteristics of classes of multivariable functions , 2008 .
[26] Henryk Wozniakowski,et al. Liberating the dimension , 2010, J. Complex..
[27] A. Pietsch. History of Banach Spaces and Linear Operators , 2007 .
[28] Michael Griebel,et al. A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.
[29] D. B. Bazarkhanov,et al. Phi-transform characterization of the Nikol'skii-Besov and Lizorkin-Triebel function spaces with mixed smoothness , 2004 .
[30] Dinh Dung,et al. Non-linear Approximations Using Sets of Finite Cardinality or Finite Pseudo-dimension , 2001, J. Complex..
[31] Aicke Hinrichs,et al. Optimal quasi-Monte Carlo rules on order 2 digital nets for the numerical integration of multivariate periodic functions , 2016, Numerische Mathematik.
[32] W. Schmidt. Irregularities of distribution , 1968 .
[33] Vladimir Temlyakov. Nonlinear Kolmogorov widths , 1998 .
[34] E. S. Belinskii,et al. Estimates for the Kolmogorov diameters of classes of functions with conditions on the mixed difference in the uniform metric , 1991 .
[35] Dinh Dung. NON-LINEAR N-TERM APPROXIMATIONS OF SMOOTH FUNCTIONS USING WAVELET DECOMPOSITIONS , 2002 .
[36] V. N. Temlyakov. Error estimates of quadrature formulas for classes of functions with bounded mixed derivative , 1989 .
[37] Mordechay B. Levin,et al. On the Lower Bound in the Lattice Point Remainder Problem for a Parallelepiped , 2013, Discret. Comput. Geom..
[38] A. S. Romanyuk,et al. Approximation of classes $B_{p,\theta }^r$ of periodic functions of one and several variables , 2010 .
[39] Mario Ullrich,et al. On "Upper Error Bounds for Quadrature Formulas on Function Classes" by K.K. Frolov , 2014, MCQMC.
[40] Wolfgang M. Schmidt,et al. Irregularities of distribution. VIII , 1974 .
[41] Dinh Dung,et al. On Optimal Recovery of Multivariate Periodic Functions , 1991 .
[42] Winfried Sickel,et al. Best m-term aproximation and tensor product of Sobolev and Besov spaces-the case of non-compact embeddings , 2010 .
[43] Vladimir Temlyakov,et al. Incremental Greedy Algorithm and Its Applications in Numerical Integration , 2014, MCQMC.
[44] W. D. Evans. FUNCTION SPACES, ENTROPY NUMBERS AND DIFFERENTIAL OPERATORS (Cambridge Tracts in Mathematics 120) By David E. Edmunds and Hans Triebel: 252 pp., £40.00, ISBN 0 521 56036 5 (Cambridge University Press, 1996). , 1998 .
[45] F. Thorne,et al. Geometry of Numbers , 2017, Algebraic Number Theory.
[46] Henryk Wozniakowski,et al. Liberating the dimension for function approximation , 2011, J. Complex..
[47] È S Belinskiĭ. APPROXIMATION BY A “FLOATING” SYSTEM OF EXPONENTIALS ON CLASSES OF SMOOTH PERIODIC FUNCTIONS , 1988 .
[48] Grzegorz W. Wasilkowski,et al. Tractability of infinite-dimensional integration in the worst case and randomized settings , 2011, J. Complex..
[49] D. B. Bazarkhanov,et al. Nonlinear approximations of classes of periodic functions of many variables , 2014 .
[50] É. M. Galeev. Approximation by Fourier sums of classes of functions with several bounded derivatives , 1978 .
[51] K. Ritter,et al. Simple Cubature Formulas with High Polynomial Exactness , 1999 .
[52] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[53] Jan Vybíral. Function spaces with dominating mixed smoothness , 2006 .
[54] Vladimir N. Temlyakov,et al. On Approximate Recovery of Functions with Bounded Mixed Derivative , 1993, J. Complex..
[55] Sergei A. Stasyuk. Approximations of the classes MBp,θr of periodic functions of several variables by polynomials according to the Haar system , 2015 .
[56] Sebastian Mayer,et al. Counting Via Entropy: New Preasymptotics for the Approximation Numbers of Sobolev Embeddings , 2015, SIAM J. Numer. Anal..
[57] E. S. Belinsky. Estimates of Entropy Numbers and Gaussian Measures for Classes of Functions with Bounded Mixed Derivative , 1998 .
[58] Guannan Zhang,et al. Stochastic finite element methods for partial differential equations with random input data* , 2014, Acta Numerica.
[59] J. Kuelbs,et al. Metric entropy and the small ball problem for Gaussian measures , 1993 .
[60] J. Hammersley. MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .
[61] V V Dubinin,et al. CUBATURE FORMULAS FOR CLASSES OF FUNCTIONS WITH BOUNDED MIXED DIFFERENCE , 1993 .
[62] Tino Ullrich,et al. Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square , 2013 .
[63] Pál-Andrej Nitsche,et al. Best N Term Approximation Spaces for Tensor Product Wavelet Bases , 2006 .
[64] È M Galeev. KOLMOGOROV WIDTHS IN THE SPACE ${\tilde L}_q$ OF THE CLASSES ${\tilde W}_p^{\overline \alpha}$ AND ${\tilde H}_p^{\overline \alpha}$ OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES , 1986 .
[65] V N Temljakov. APPROXIMATION OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES WITH BOUNDED MIXED DIFFERENCE , 1982 .
[66] Vladimir Temlyakov,et al. The Volume Estimates and Their Applications , 2003 .
[67] Henryk Wozniakowski,et al. Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..
[68] Dinh Dung,et al. Sampling and Cubature on Sparse Grids Based on a B-spline Quasi-Interpolation , 2012, Found. Comput. Math..
[69] Josef Dick,et al. Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..
[70] M. Skriganov,et al. Explicit constructions in the classical mean squares problem in irregularities of point distribution , 2002 .
[71] Vladimir Temlyakov. Universality of the fibonacci cubature formulas , 1993 .
[72] Jan Vybíral,et al. A New Proof of the Jawerth-Franke Embedding , 2008 .
[73] Hans-Joachim Bungartz,et al. A Note on the Complexity of Solving Poisson's Equation for Spaces of Bounded Mixed Derivatives , 1999, J. Complex..
[74] A. Litvak,et al. Euclidean projections of a p-convex body , 2000 .
[75] E. M. Galeev. Order Estimates of Derivatives of the Multidimensional Periodic Dirichlet \alpha-KERNEL in a Mixed Norm , 1983 .
[76] Vladimir Temlyakov,et al. CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS , 2022 .
[77] Stefan Kunis,et al. Fast evaluation of trigonometric polynomials from hyperbolic crosses , 2006, Numerical Algorithms.
[78] A. D. Izaak. Kolmogorov widths in finite-dimensional spaces with mixed norms , 1994 .
[79] V. Temlyakov,et al. Remez-type inequalities for the hyperbolic cross polynomials , 2016, 1606.03773.
[80] V V Dubinin. Cubature formulae for Besov classes , 1997 .
[81] Robert J. Kunsch. Bernstein Numbers and Lower Bounds for the Monte Carlo Error , 2014, MCQMC.
[82] V N Temlyakov,et al. Approximation of Periodic Functions of Several Variables by Trigonometric Polynomials, and Widths of Some Classes of Functions , 1986 .
[83] Ahmed E. Radwan,et al. δβ-I APPROXIMATION SPACES , 2017 .
[84] Stefan Heinrich. Some open problems concerning the star-discrepancy , 2003, J. Complex..
[85] Erich Novak,et al. Some Results on the Complexity of Numerical Integration , 2014, MCQMC.
[86] E. Gluskin. EXTREMAL PROPERTIES OF ORTHOGONAL PARALLELEPIPEDS AND THEIR APPLICATIONS TO THE GEOMETRY OF BANACH SPACES , 1989 .
[87] H. Wozniakowski. Average case complexity of linear multivariate problems , 1993, math/9307234.
[88] Albert Cohen,et al. RECOVERY OF FUNCTIONS OF MANY VARIABLES VIA COMPRESSIVE SENSING , 2011 .
[89] Tino Ullrich,et al. Haar projection numbers and failure of unconditional convergence in Sobolev spaces , 2015, Mathematische Zeitschrift.
[90] Vladimir N. Temlyakov. An Inequality for Trigonometric Polynomials and Its Application for Estimating the Entropy Numbers , 1995, J. Complex..
[91] E. S. Belinskii. Approximation of functions of several variables by trigonometric polynomials with given number of harmonics, and estimates of ε-entropy , 1989 .
[92] H. Triebel,et al. Topics in Fourier Analysis and Function Spaces , 1987 .
[93] Steffen Dereich,et al. Infinite-Dimensional Quadrature and Approximation of Distributions , 2009, Found. Comput. Math..
[94] Charles A. Micchelli,et al. Corrigendum to "Multivariate approximation by translates of the Korobov function on Smolyak grids" [J. Complexity 29 (2013) 424-437] , 2016, J. Complex..
[95] Jan Vybíral,et al. The Jawerth–Franke Embedding of Spaces with Dominating Mixed Smoothness , 2009 .
[96] Grzegorz W. Wasilkowski,et al. Liberating the Dimension for Function Approximation and Integration , 2012 .
[97] E. Haacke. Sequences , 2005 .
[98] M. Levin,et al. On the lower bound of the discrepancy of $(t,s)$ sequences: II , 2015, 1505.06610.
[99] H. Wozniakowski,et al. A new algorithm and worst case complexity for Feynman-Kac path integration , 2000 .
[100] A. S. Romanyuk,et al. Asymptotic estimates for the best trigonometric and bilinear approximations of classes of functions of several variables , 2010 .
[101] M. Nikolskii,et al. Approximation of Functions of Several Variables and Embedding Theorems , 1971 .
[102] Dinh Dung,et al. Continuous Algorithms in n-Term Approximation and Non-Linear Widths , 2000 .
[103] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[104] Andrej Yu. Garnaev,et al. On widths of the Euclidean Ball , 1984 .
[105] Dinh Dung,et al. Linear collective collocation and Galerkin approximations for parametric and stochastic elliptic PDEs , 2015, 1511.03377.
[106] Michael Griebel,et al. Optimized general sparse grid approximation spaces for operator equations , 2009, Math. Comput..
[107] Din' Zung. Approximation of classes of smooth functions of several variables , 1986 .
[108] Christopher Kacwin,et al. Realization of the Frolov cubature formula via orthogonal Chebyshev-Frolov lattices , 2016 .
[109] R. DeVore,et al. Nonlinear Approximation by Trigonometric Sums , 1995 .
[110] M. Lacey,et al. On the Small Ball Inequality in All Dimensions , 2007, 0705.4619.
[111] N. S. Bakhvalov. A lower bound for the asymptotic characteristics of classes of functions with dominating mixed derivative , 1972 .
[112] N. Temirgaliev,et al. General algorithm for the numerical integration of functions of several variables , 2014 .
[113] Patrick L. Combettes,et al. Kolmogorov n-Widths of Function Classes Induced by a Non-Degenerate Differential Operator: A Convex Duality Approach , 2014, 1412.6400.
[114] Reinhold Schneider,et al. Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , 2014, J. Complex..
[115] S. Foucart. Sparse Recovery Algorithms: Sufficient Conditions in Terms of RestrictedIsometry Constants , 2012 .
[116] D. Dung. B-Spline Quasi-Interpolation Sampling Representation and Sampling Recovery in Sobolev Spaces of Mixed Smoothness , 2016, 1603.01937.
[117] Vladimir Temlyakov,et al. Constructive sparse trigonometric approximation and other problems for functions with mixed smoothness , 2014, 1412.8647.
[118] Michael Gnewuch,et al. Optimal Randomized Multilevel Algorithms for Infinite-Dimensional Integration on Function Spaces with ANOVA-Type Decomposition , 2012, SIAM J. Numer. Anal..
[119] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[120] M. Griebel. Sparse Grids and Related Approximation Schemes for Higher Dimensional Problems , 2006 .
[121] V. Tikhomirov,et al. DIAMETERS OF SETS IN FUNCTION SPACES AND THE THEORY OF BEST APPROXIMATIONS , 1960 .
[122] Michael Gnewuch,et al. Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher-Order Convergence , 2012, Found. Comput. Math..
[123] C. Chui,et al. A natural formulation of quasi-interpolation by multivariate splines , 1987 .
[124] Erich Novak,et al. A Universal Algorithm for Multivariate Integration , 2015, Found. Comput. Math..
[125] Sean R Eddy,et al. What is dynamic programming? , 2004, Nature Biotechnology.
[126] Ronald A. DeVore,et al. Some remarks on greedy algorithms , 1996, Adv. Comput. Math..
[127] V. Temlyakov. Estimates of best bilinear approximations of functions and approximation numbers of integral operators , 1992 .
[128] Tino Ullrich,et al. Function Spaces with Dominating Mixed Smoothness Characterization by Differences , 2006 .
[129] I. V. Vilenkin. Plane nets of integration , 1967 .
[130] Winfried Sickel,et al. Best m-term approximation and Lizorkin-Triebel spaces , 2011, J. Approx. Theory.
[131] Vladimir Temlyakov,et al. Estimate of approximate characteristics for classes of functions with bounded mixed derivative , 1995 .
[132] Annie A. M. Cuyt,et al. Approximation Theory , 2008, Wiley Encyclopedia of Computer Science and Engineering.
[133] Vladimir Temlyakov,et al. On universal estimators in learning theory , 2006 .
[134] Michael Gnewuch,et al. Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..
[135] A. S. Romanyuk,et al. Approximation of classes of periodic functions of several variables , 1992 .
[136] Fred J. Hickernell,et al. Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..
[137] Lutz Kämmerer,et al. Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness , 2015, Numerische Mathematik.
[138] Lutz Kämmerer,et al. Reconstructing Hyperbolic Cross Trigonometric Polynomials by Sampling along Rank-1 Lattices , 2013, SIAM J. Numer. Anal..
[139] Van Kien Nguyen,et al. Bernstein numbers of embeddings of isotropic and dominating mixed Besov spaces , 2014, 1411.7246.
[140] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[141] A. Romanyuk,et al. Kolmogorov and trigonometric widths of the Besov classes $ B^r_{p,\theta}$ of multivariate periodic functions , 2006 .
[142] Lev Markhasin,et al. Discrepancy and integration in function spaces with dominating mixed smoothness , 2013, 1307.2114.
[143] Din' Zung,et al. Best linear methods for approximation of classes of periodic functions of several variables , 1987 .
[144] G. Faber. Über stetige Funktionen , 1908 .
[145] Tino Ullrich,et al. N-Widths and ε-Dimensions for High-Dimensional Approximations , 2013, Found. Comput. Math..
[146] Roger C. Baker. On Irregularities of Distribution , 1978 .
[147] R. V. Gamkrelidze,et al. Analysis II : Convex Analysis and Approximation Theory , 2019 .
[148] Fred J. Hickernell,et al. Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..
[149] Benjamin Doerr,et al. A lower bound for the discrepancy of a random point set , 2012, J. Complex..
[150] É. M. Galeev. Orders of the orthoprojection widths of classes of periodic functions of one and of several variables , 1988 .
[151] Henryk Wozniakowski,et al. Quasi-polynomial tractability , 2011, J. Complex..
[152] Thomas Kühn,et al. Metric Entropy of Integration Operators and Small Ball Probabilities for the Brownian Sheet , 1999 .
[153] Vladimir Temlyakov. On Two Problems in the Multivariate Approximation , 1997 .
[154] N. S. Nikol'skaya. The approximation in the Lp metric of differentiable functions of several variables by Fourier sums , 1974 .
[155] V. Temlyakov,et al. On bestm-term approximations and the entropy of sets in the spaceL1 , 1994 .
[156] Winfried Sickel,et al. Weyl numbers of embeddings of tensor product Besov spaces , 2014, J. Approx. Theory.
[157] K. Hallatschek. Fouriertransformation auf dünnen Gittern mit hierarchischen Basen , 1992 .
[158] Michael Gnewuch,et al. Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition , 2014, J. Approx. Theory.
[159] Vladimir N. Temlyakov,et al. On the entropy numbers of the mixed smoothness function classes , 2016, J. Approx. Theory.
[160] A S Romanyuk. Best approximations and widths of classes of periodic functions of several variables , 2008 .
[161] I. Sloan,et al. Lattice Rules for Multivariate Approximation in the Worst Case Setting , 2006 .
[162] Winfried Sickel,et al. Approximation numbers of Sobolev embeddings - Sharp constants and tractability , 2014, J. Complex..
[163] Vladimir N. Temlyakov,et al. Nonlinear Methods of Approximation , 2003, Found. Comput. Math..
[164] É. M. Galeev. Widths of the Besov Classes Bp,θr(Td) , 2001 .
[165] V. Temlyakov,et al. Greedy Algorithms with Regard to Multivariate Systems with Special Structure , 1997 .
[166] Fred J. Hickernell,et al. The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..
[167] N. M. Korobov. Double trigonometric sums and their application in approximating rational sums , 1969 .
[168] D. Dung,et al. ON NONLINEAR n -WIDTHS , 1996 .
[169] Wolfgang Dahmen,et al. Approximation of High-Dimensional Rank One Tensors , 2013, Constructive Approximation.
[170] S. A. Stasyuk. Best approximation of periodic functions of several variables from the classes $ MB_{{p,\theta }}^{\omega } $ , 2012 .
[171] Erich Novak,et al. Tractability of the Approximation of High-Dimensional Rank One Tensors , 2014, Constructive Approximation.
[172] R. M. Trigub,et al. Some Topics in Fourier Analysis and Approximation Theory , 1996, funct-an/9612008.
[173] T. Ullrich. Smolyak ’ s Algorithm , Sampling on Sparse Grids and Sobolev Spaces of Dominating Mixed Smoothness , 2006 .
[174] S. M. Voronin,et al. Quadrature formulas associated with divisors of the field of Gaussian numbers , 1989 .
[175] Albert Cohen,et al. Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients , 2015, 1509.07050.
[176] V. N. Temli︠a︡kov. Approximation of functions with bounded mixed derivative , 1989 .
[177] Christoph Aistleitner,et al. Covering numbers, dyadic chaining and discrepancy , 2011, J. Complex..
[178] Nurlan Nauryzbayev,et al. An Exact Order of Discrepancy of the Smolyak Grid and Some General Conclusions in the Theory of Numerical Integration , 2012, Found. Comput. Math..
[179] N. Temirgaliev,et al. Applications of Smolyak quadrature formulas to the numerical integration of Fourier coefficients and in function recovery problems , 2010 .
[180] Zhi-Wei Sun. On covering numbers , 2006 .
[181] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[182] R. S. Ismagilov,et al. DIAMETERS OF SETS IN NORMED LINEAR SPACES AND THE APPROXIMATION OF FUNCTIONS BY TRIGONOMETRIC POLYNOMIALS , 1974 .
[183] Nikolai Sergeevich Bakhvalov,et al. On the approximate calculation of multiple integrals , 2015, J. Complex..
[184] V. E. Maiorov. Trigonometric diameters of the Sobolev classes Wpr in the space Lq , 1986 .
[185] Erich Novak,et al. High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..
[186] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[187] C. D. Boor,et al. Spline approximation by quasiinterpolants , 1973 .
[188] 慧 廣瀬. A Mathematical Introduction to Compressive Sensing , 2015 .
[189] Mario Ullrich,et al. A Monte Carlo Method for Integration of Multivariate Smooth Functions , 2016, SIAM J. Numer. Anal..
[190] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .
[191] S. Kudryavtsev. Diameters of classes of smooth functions , 1995 .
[192] É. M. Galeev. Linear widths of Hölder-Nikol'skii classes of periodic functions of several variables , 1996 .
[193] V. N. Temlyakov,et al. Approximation of functions of several variables by trigonometric polynomials with harmonics from hyperbolic crosses , 1989 .
[194] Jens Oettershagen,et al. On the orthogonality of the Chebyshev–Frolov lattice and applications , 2016, 1606.00492.
[195] rer. nat. habil. Haroske,et al. Entropy numbers and approximation numbers in weighted function spaces of type Bsp,q and Fsp,q, eigenvalue distributions of some degenerate pseudodifferential operators , 1995 .
[196] Winfried Sickel,et al. Optimal approximation of multivariate periodic Sobolev functions in the sup-norm , 2015, 1505.02636.
[197] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[198] Werner Linde,et al. Small Deviations of Gaussian Random Fields in $L_q$-Spaces , 2006 .
[199] K. Ritter,et al. High dimensional integration of smooth functions over cubes , 1996 .
[200] Vladimir N. Temlyakov,et al. Nonlinear tensor product approximation of functions , 2014, J. Complex..
[201] A. S. Romanyuk. Linear Widths of the Besov Classes of Periodic Functions of Many Variables. I , 2001 .
[202] Holger Rauhut,et al. The Gelfand widths of ℓp-balls for 0 , 2010, ArXiv.
[203] V. Temlyakov. ESTIMATES OF THE BEST BILINEAR APPROXIMATIONS OF FUNCTIONS OF TWO VARIABLES AND SOME OF THEIR APPLICATIONS , 1989 .
[204] Stephen J. Dilworth,et al. Convergence of Some Greedy Algorithms in Banach Spaces , 2002 .
[205] Winfried Sickel,et al. Best m-Term Approximation and Sobolev–Besov Spaces of Dominating Mixed Smoothness—the Case of Compact Embeddings , 2012 .
[206] Vladimir N. Temlyakov,et al. Greedy algorithms in Banach spaces , 2001, Adv. Comput. Math..
[207] É. M. Galeev. Approximation of classes of periodic functions of several variables by nuclear operators , 1990 .
[208] P L Ul'janov. IMBEDDING THEOREMS AND RELATIONS BETWEEN BEST APPROXIMATIONS (MODULI OF CONTINUITY) IN DIFFERENT METRICS , 1970 .
[209] B. Jawerth,et al. A discrete transform and decompositions of distribution spaces , 1990 .
[210] V N Temlyakov. APPROXIMATION OF FUNCTIONS WITH A BOUNDED MIXED DIFFERENCE BY TRIGONOMETRIC POLYNOMIALS, AND THE WIDTHS OF SOME CLASSES OF FUNCTIONS , 1983 .
[211] Michael Griebel,et al. Hyperbolic cross approximation in infinite dimensions , 2015, J. Complex..
[212] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[213] Dinh Dng. B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness , 2011 .
[214] Hans Triebel,et al. Global solutions of Navier-Stokes equations for large initial data belonging to spaces with dominating mixed smoothness , 2015, J. Complex..
[215] David E. Edmunds,et al. Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces , 1998 .
[216] Wolfgang Dahmen,et al. Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions , 2005, J. Mach. Learn. Res..
[217] S. A. Stasyuk. Best m-term approximation of the classes$$ B_{\infty, \theta }^r $$ of functions of many variables by polynomials in the haar system , 2011 .
[218] N. N. Pustovoitov. On best approximations by analogs of “proper” and “improper” hyperbolic crosses , 2013 .
[219] N. N. Pustovoitov,et al. Multidimensional Jackson theorem in the L2 SPACE , 1991 .
[220] W. Sickel,et al. Spline interpolation on sparse grids , 2011 .
[221] Charles K. Chui,et al. An Introduction to Wavelets , 1992 .
[222] B. Carl. Entropy numbers, s-numbers, and eigenvalue problems , 1981 .
[223] Joel Ratsaby,et al. On the Degree of Approximation by Manifolds of Finite Pseudo-Dimension , 1999 .
[224] A S Romanyuk. Best $ M$-term trigonometric approximations of Besov classes of periodic functions of several variables , 2003 .
[225] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[226] Björn Jawerth,et al. Some observations on Besov and Lizorkin-Triebel spaces. , 1977 .
[227] É. M. Galeev. The Kolmogorov diameter of the intersection of classes of periodic functions and of finite-dimensional sets , 1981 .
[228] V. Temlyakov. Greedy-Type Approximation in Banach Spaces and Applications , 2005 .
[229] Ya.M. Zhileikii,et al. Quadrature formulae on classes of functions , 1968 .
[230] Vladimir N. Temlyakov,et al. An inequality for the entropy numbers and its application , 2013, J. Approx. Theory.
[231] V. Temlyakov,et al. SPARSE APPROXIMATION AND RECOVERY BY GREEDY ALGORITHMS IN BANACH SPACES , 2013, Forum of Mathematics, Sigma.
[232] Lutz Kämmerer,et al. Interpolation lattices for hyperbolic cross trigonometric polynomials , 2012, J. Complex..
[233] Thomas Kühn,et al. A Lower Estimate for Entropy Numbers , 2001, J. Approx. Theory.
[234] Thomas Gerstner,et al. Numerical integration using sparse grids , 2004, Numerical Algorithms.
[235] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[236] B. Carl,et al. Gelfand numbers of operators with values in a Hilbert space , 1988 .
[237] Lutz Kämmerer,et al. On the stability of the hyperbolic cross discrete Fourier transform , 2011, Numerische Mathematik.
[238] Din' Zung,et al. Mean ε-dimension of the functional class BG, P , 1980 .
[239] H. Davenport. Note on irregularities of distribution , 1956 .
[240] Vladimir Temlyakov,et al. ON A WAY OF OBTAINING LOWER ESTIMATES FOR THE ERRORS OF QUADRATURE FORMULAS , 1992 .
[241] D. Dung. Best multivariate approximations by trigonometric polynomials with frequencies from hyperbolic crosses , 1997 .
[242] A. Pajor,et al. Subspaces of small codimension of finite-dimensional Banach spaces , 1986 .
[243] Peter Mathé. s-Numbers in information-based complexity , 1990, J. Complex..
[244] D. B. Bazarkhanov,et al. Nonlinear trigonometric approximations of multivariate function classes , 2016 .
[245] D. Potts,et al. Approximation of multivariate functions by trigonometric polynomials based on rank-1 lattice sampling , 2013 .
[246] E. Novak,et al. Tractability of Multivariate Problems , 2008 .
[247] T. Ullrich,et al. Optimal sampling recovery of mixed order Sobolev embeddings via discrete Littlewood–Paley type characterizations , 2016, 1603.04809.
[248] A. Romanyuk,et al. Bilinear and trigonometric approximations of periodic functions of several variables of Besov classes?$ B_{p, \theta}^r$ , 2006 .
[249] H. Wozniakowski,et al. On tractability of path integration , 1996 .
[250] H. Triebel. Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration , 2010 .
[251] Vladimir Temlyakov,et al. APPROXIMATE RECOVERY OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES , 1987 .
[252] V. Milman,et al. New volume ratio properties for convex symmetric bodies in ℝn , 1987 .
[253] Jan Vybíral,et al. Widths of embeddings in function spaces , 2008, J. Complex..
[254] B. Carl,et al. Entropy, Compactness and the Approximation of Operators , 1990 .
[255] Michael Gnewuch,et al. On weighted Hilbert spaces and integration of functions of infinitely many variables , 2014, J. Complex..
[256] Y Makovoz. On trigonometric n-widths and their generalization , 1984 .
[257] A. Kolmogoroff,et al. Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .
[258] Takashi Goda,et al. Optimal order quasi-Monte Carlo integration in weighted Sobolev spaces of arbitrary smoothness , 2015 .
[259] V A Rvachev,et al. Compactly supported solutions of functional-differential equations and their applications , 1990 .
[260] N. Temirgaliev. Tensor products of functionals and their application , 2010 .
[261] Tsuyoshi Murata,et al. {m , 1934, ACML.
[262] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[263] Alexey Chernov,et al. New explicit-in-dimension estimates for the cardinality of high-dimensional hyperbolic crosses and approximation of functions having mixed smoothness , 2013, J. Complex..
[264] Van Kien Nguyen,et al. Change of Variable in Spaces of Mixed Smoothness and Numerical Integration of Multivariate Functions on the Unit Cube , 2015 .
[265] Joel Ratsaby,et al. The Degree of Approximation of Sets in Euclidean Space Using Sets with Bounded Vapnik-Chervonenkis Dimension , 1998, Discret. Appl. Math..
[266] Takashi Goda,et al. An Explicit Construction of Optimal Order Quasi-Monte Carlo Rules for Smooth Integrands , 2016, SIAM J. Numer. Anal..
[267] Aicke Hinrichs,et al. Optimal Point Sets for Quasi-Monte Carlo Integration of Bivariate Periodic Functions with Bounded Mixed Derivatives , 2014, MCQMC.
[268] V M Tikhomirov,et al. SOME APPROXIMATION CHARACTERISTICS OF THE CLASSES OF SMOOTH FUNCTIONS OF SEVERAL VARIABLES IN THE METRIC OF , 2016 .
[269] Vladimir Temlyakov,et al. On a certain norm and related applications , 1998 .
[270] Vladimir N. Temlyakov,et al. The best m-term approximation and greedy algorithms , 1998, Adv. Comput. Math..
[271] N. Temirgaliev,et al. An application of tensor products of functionals in problems of numerical integration , 2009 .
[272] V. N. Temli︠a︡kov. Approximation of periodic functions , 1993 .
[273] C. Schütt. Entropy numbers of diagonal operators between symmetric Banach spaces , 1984 .
[274] M. Lacey,et al. On the small ball inequality in three dimensions , 2006, math/0609815.
[275] Vladimir Temlyakov,et al. Universal bases and greedy algorithms for anisotropic function classes , 2002 .
[276] Albert Cohen,et al. Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.
[277] R. DeVore,et al. Optimal nonlinear approximation , 1989 .
[278] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[279] E. Novak,et al. The inverse of the star-discrepancy depends linearly on the dimension , 2001 .
[280] Michel Talagrand,et al. The Small Ball Problem for the Brownian Sheet , 1994 .
[281] E. Gluskin. NORMS OF RANDOM MATRICES AND WIDTHS OF FINITE-DIMENSIONAL SETS , 1984 .
[282] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[283] Albrecht Pietsch. Bad properties of the Bernstein numbers , 2008 .
[284] K. Babenko. Some problems in approximation theory and numerical analysis , 1985 .
[285] Winfried Sickel,et al. Spaces of functions of mixed smoothness and approximation from hyperbolic crosses , 2004, J. Approx. Theory.
[286] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[287] B. V. Simonov,et al. Mixed Moduli of Smoothness in $L_p$, $1 , 2013, 1304.3329.
[288] V. Temlyakov. Approximation by elements of a finite-dimensional subspace of functions from various sobolev or nikol'skii spaces , 1988 .
[289] Дауренбек Болысбекович Базарханов,et al. Оценки поперечников Фурье классов типа Никольского - Бесова и Лизоркина - Трибеля периодических функций многих переменных@@@Estimates of the Fourier Widths of Classes of Nikolskii - Besov and Lizorkin - Triebel Types of Periodic Functions of Several Variables , 2010 .
[290] Henryk Wozniakowski,et al. Liberating the dimension for function approximation: Standard information , 2011, J. Complex..
[291] Dinh Dung. Asymptotic orders of optimal non-linear approximations , 2001 .
[292] Winfried Sickel,et al. Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross , 2009, J. Approx. Theory.
[293] Leah Blau,et al. Fourier Analysis And Approximation Of Functions , 2016 .
[294] Stefan Heinrich. On the relation between linear n -widths and approximation numbers , 1989 .
[295] Boolean methods in interpolation and approximation , 1991 .
[296] E. S. Belinskii. Decomposition theorems and approximation by a “floating" system of exponentials , 1998 .
[297] M. Levin,et al. On the lower bound of the discrepancy of Halton’s sequence II , 2016, European Journal of Mathematics.
[298] Winfried Sickel,et al. Interpolation on Sparse Grids and Nikol'skijbesov Spaces of Dominating Mixed Smoothness Running Title: Interpolation on Sparse Grids and Nikol'skijjbesov Spaces , 2007 .
[299] Sh. A. Balgimbayeva,et al. Nonlinear approximation of function spaces of mixed smoothness , 2015 .
[300] W. Sickel. Approximation from sparse grids and function spaces of dominating mixed smoothness , 2006 .
[301] Din' Zung. APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS OF FUNCTIONS OF SEVERAL VARIABLES ON THE TORUS , 1988 .
[302] W. Sickel,et al. Approximation of Mixed Order Sobolev Functions on the d-Torus: Asymptotics, Preasymptotics, and d-Dependence , 2013, 1312.6386.
[303] R. DeVore,et al. Hyperbolic Wavelet Approximation , 1998 .
[304] Lutz Kämmerer,et al. Approximation of multivariate periodic functions by trigonometric polynomials based on sampling along rank-1 lattice with generating vector of Korobov form , 2015, J. Complex..
[305] Charles A. Micchelli,et al. Multivariate approximation by translates of the Korobov function on Smolyak grids , 2013, J. Complex..
[306] Мирболат Бакытжанович Сихов,et al. Об алгоритме построения равномерно распределенных сеток Коробова@@@On an Algorithm for Constructing Uniformly Distributed Korobov Grids , 2010 .
[307] Aicke Hinrichs. Discrepancy of Hammersley points in Besov spaces of dominating mixed smoothness , 2010 .
[308] Mario Ullrich,et al. The Role of Frolov's Cubature Formula for Functions with Bounded Mixed Derivative , 2015, SIAM J. Numer. Anal..
[309] Mykhailo V. Hembars’kyi,et al. Approximate characteristics of the classes $$ {B}_{p,\theta}^{\Omega} $$ of periodic functions of one variable and many ones , 2019, Journal of Mathematical Sciences.
[310] Henryk Wozniakowski,et al. Tractability through increasing smoothness , 2010, J. Complex..
[311] A. Romanyuk,et al. Approximability of the classes B_{p,\theta}^r of periodic functions of several variables by linear methods and best approximations , 2004 .
[312] Erich Novak,et al. On weak tractability of the Clenshaw-Curtis Smolyak algorithm , 2014, J. Approx. Theory.
[313] Габдолла Акишевич Акишев,et al. Приближение функциональных классов в пространствах со смешанной нормой@@@Approximation of function classes in spaces with mixed norm , 2006 .