Hyperbolic Cross Approximation

Hyperbolic cross approximation is a special type of multivariate approximation. Recently, driven by applications in engineering, biology, medicine and other areas of science new challenging problems have appeared. The common feature of these problems is high dimensions. We present here a survey on classical methods developed in multivariate approximation theory, which are known to work very well for moderate dimensions and which have potential for applications in really high dimensions. The theory of hyperbolic cross approximation and related theory of functions with mixed smoothness are under detailed study for more than 50 years. It is now well understood that this theory is important both for theoretical study and for practical applications. It is also understood that both theoretical analysis and construction of practical algorithms are very difficult problems. This explains why many fundamental problems in this area are still unsolved. Only a few survey papers and monographs on the topic are published. This and recently discovered deep connections between the hyperbolic cross approximation (and related sparse grids) and other areas of mathematics such as probability, discrepancy, and numerical integration motivated us to write this survey. We try to put emphases on the development of ideas and methods rather than list all the known results in the area. We formulate many problems, which, to our knowledge, are open problems. We also include some very recent results on the topic, which sometimes highlight new interesting directions of research. We hope that this survey will stimulate further active research in this fascinating and challenging area of approximation theory and numerical analysis.

[1]  Michael Döhler,et al.  Nonequispaced Hyperbolic Cross Fast Fourier Transform , 2010, SIAM J. Numer. Anal..

[2]  D. B. Bazarkhanov,et al.  Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I , 2010 .

[3]  A. D. Izaak Widths of Hölder-Nikol'skii classes and finite-dimensional subsets in spaces with mixed norm , 1996 .

[4]  A. S. Romanyuk,et al.  Approximation of the Besov classes of periodic functions of several variables in a space Lq , 1991 .

[5]  M. Griebel,et al.  Optimized Tensor-Product Approximation Spaces , 2000 .

[6]  H. Yserentant Regularity and Approximability of Electronic Wave Functions , 2010 .

[7]  S. B. Stechkin On absolute convergence of orthogonal series. I. , 1953 .

[8]  Vladimir Temlyakov APPROXIMATION OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES BY BILINEAR FORMS , 1987 .

[9]  V. N. Temlyakov,et al.  Constructive Sparse Trigonometric Approximation for Functions with Small Mixed Smoothness , 2015, 1503.00282.

[10]  W. Sickel,et al.  The Smolyak Algorithm, Sampling on Sparse Grids and Function Spaces of Dominating Mixed Smoothness , 2007 .

[11]  Dinh Dung,et al.  High-dimensional periodic sampling on Smolyak grids based on B-spline quasi-interpolation , 2015, 1502.01447.

[12]  Hans Triebel Faber Systems and Their Use in Sampling, Discrepancy, Numerical Integration , 2012 .

[13]  Grzegorz W. Wasilkowski Liberating the dimension for L2-approximation , 2012, J. Complex..

[14]  Tino Ullrich,et al.  Optimal cubature in Besov spaces with dominating mixed smoothness on the unit square , 2014, J. Complex..

[15]  H. Wozniakowski,et al.  Lattice Algorithms for Multivariate L∞ Approximation in the Worst-Case Setting , 2009 .

[16]  S. K. Zaremba,et al.  The extreme and L2 discrepancies of some plane sets , 1969 .

[17]  Richard F. Bass Probability Estimates for Multiparameter Brownian Processes , 1988 .

[18]  N. Temirgaliev Efficiency of numerical integration algorithms related to divisor theory in cyclotomic fields , 1997 .

[19]  É. M. Galeev,et al.  KOLMOGOROV WIDTHS OF CLASSES OF PERIODIC FUNCTIONS OF ONE AND SEVERAL VARIABLES , 1991 .

[20]  Aicke Hinrichs,et al.  Carl's inequality for quasi-Banach spaces , 2015, 1512.04421.

[21]  Din' Zung,et al.  ON THE RECOVERY AND ONE-SIDED APPROXIMATION OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES , 1991 .

[22]  Vladimir Temlyakov BRIEF COMMUNICATIONS: Quadrature formulae and recovery of number-theoretical nets from nodal values for classes of functions with small degree of smoothness , 1985 .

[23]  Endre Süli,et al.  Sparse finite element approximation of high-dimensional transport-dominated diffusion problems , 2008 .

[24]  Winfried Sickel,et al.  Sampling on energy-norm based sparse grids for the optimal recovery of Sobolev type functions in Hγ , 2014, J. Approx. Theory.

[25]  B. S. Kashin,et al.  On a norm and approximate characteristics of classes of multivariable functions , 2008 .

[26]  Henryk Wozniakowski,et al.  Liberating the dimension , 2010, J. Complex..

[27]  A. Pietsch History of Banach Spaces and Linear Operators , 2007 .

[28]  Michael Griebel,et al.  A combination technique for the solution of sparse grid problems , 1990, Forschungsberichte, TU Munich.

[29]  D. B. Bazarkhanov,et al.  Phi-transform characterization of the Nikol'skii-Besov and Lizorkin-Triebel function spaces with mixed smoothness , 2004 .

[30]  Dinh Dung,et al.  Non-linear Approximations Using Sets of Finite Cardinality or Finite Pseudo-dimension , 2001, J. Complex..

[31]  Aicke Hinrichs,et al.  Optimal quasi-Monte Carlo rules on order 2 digital nets for the numerical integration of multivariate periodic functions , 2016, Numerische Mathematik.

[32]  W. Schmidt Irregularities of distribution , 1968 .

[33]  Vladimir Temlyakov Nonlinear Kolmogorov widths , 1998 .

[34]  E. S. Belinskii,et al.  Estimates for the Kolmogorov diameters of classes of functions with conditions on the mixed difference in the uniform metric , 1991 .

[35]  Dinh Dung NON-LINEAR N-TERM APPROXIMATIONS OF SMOOTH FUNCTIONS USING WAVELET DECOMPOSITIONS , 2002 .

[36]  V. N. Temlyakov Error estimates of quadrature formulas for classes of functions with bounded mixed derivative , 1989 .

[37]  Mordechay B. Levin,et al.  On the Lower Bound in the Lattice Point Remainder Problem for a Parallelepiped , 2013, Discret. Comput. Geom..

[38]  A. S. Romanyuk,et al.  Approximation of classes $B_{p,\theta }^r$ of periodic functions of one and several variables , 2010 .

[39]  Mario Ullrich,et al.  On "Upper Error Bounds for Quadrature Formulas on Function Classes" by K.K. Frolov , 2014, MCQMC.

[40]  Wolfgang M. Schmidt,et al.  Irregularities of distribution. VIII , 1974 .

[41]  Dinh Dung,et al.  On Optimal Recovery of Multivariate Periodic Functions , 1991 .

[42]  Winfried Sickel,et al.  Best m-term aproximation and tensor product of Sobolev and Besov spaces-the case of non-compact embeddings , 2010 .

[43]  Vladimir Temlyakov,et al.  Incremental Greedy Algorithm and Its Applications in Numerical Integration , 2014, MCQMC.

[44]  W. D. Evans FUNCTION SPACES, ENTROPY NUMBERS AND DIFFERENTIAL OPERATORS (Cambridge Tracts in Mathematics 120) By David E. Edmunds and Hans Triebel: 252 pp., £40.00, ISBN 0 521 56036 5 (Cambridge University Press, 1996). , 1998 .

[45]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[46]  Henryk Wozniakowski,et al.  Liberating the dimension for function approximation , 2011, J. Complex..

[47]  È S Belinskiĭ APPROXIMATION BY A “FLOATING” SYSTEM OF EXPONENTIALS ON CLASSES OF SMOOTH PERIODIC FUNCTIONS , 1988 .

[48]  Grzegorz W. Wasilkowski,et al.  Tractability of infinite-dimensional integration in the worst case and randomized settings , 2011, J. Complex..

[49]  D. B. Bazarkhanov,et al.  Nonlinear approximations of classes of periodic functions of many variables , 2014 .

[50]  É. M. Galeev Approximation by Fourier sums of classes of functions with several bounded derivatives , 1978 .

[51]  K. Ritter,et al.  Simple Cubature Formulas with High Polynomial Exactness , 1999 .

[52]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[53]  Jan Vybíral Function spaces with dominating mixed smoothness , 2006 .

[54]  Vladimir N. Temlyakov,et al.  On Approximate Recovery of Functions with Bounded Mixed Derivative , 1993, J. Complex..

[55]  Sergei A. Stasyuk Approximations of the classes MBp,θr of periodic functions of several variables by polynomials according to the Haar system , 2015 .

[56]  Sebastian Mayer,et al.  Counting Via Entropy: New Preasymptotics for the Approximation Numbers of Sobolev Embeddings , 2015, SIAM J. Numer. Anal..

[57]  E. S. Belinsky Estimates of Entropy Numbers and Gaussian Measures for Classes of Functions with Bounded Mixed Derivative , 1998 .

[58]  Guannan Zhang,et al.  Stochastic finite element methods for partial differential equations with random input data* , 2014, Acta Numerica.

[59]  J. Kuelbs,et al.  Metric entropy and the small ball problem for Gaussian measures , 1993 .

[60]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[61]  V V Dubinin,et al.  CUBATURE FORMULAS FOR CLASSES OF FUNCTIONS WITH BOUNDED MIXED DIFFERENCE , 1993 .

[62]  Tino Ullrich,et al.  Lower bounds for the integration error for multivariate functions with mixed smoothness and optimal Fibonacci cubature for functions on the square , 2013 .

[63]  Pál-Andrej Nitsche,et al.  Best N Term Approximation Spaces for Tensor Product Wavelet Bases , 2006 .

[64]  È M Galeev KOLMOGOROV WIDTHS IN THE SPACE ${\tilde L}_q$ OF THE CLASSES ${\tilde W}_p^{\overline \alpha}$ AND ${\tilde H}_p^{\overline \alpha}$ OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES , 1986 .

[65]  V N Temljakov APPROXIMATION OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES WITH BOUNDED MIXED DIFFERENCE , 1982 .

[66]  Vladimir Temlyakov,et al.  The Volume Estimates and Their Applications , 2003 .

[67]  Henryk Wozniakowski,et al.  Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems , 1995, J. Complex..

[68]  Dinh Dung,et al.  Sampling and Cubature on Sparse Grids Based on a B-spline Quasi-Interpolation , 2012, Found. Comput. Math..

[69]  Josef Dick,et al.  Explicit Constructions of Quasi-Monte Carlo Rules for the Numerical Integration of High-Dimensional Periodic Functions , 2007, SIAM J. Numer. Anal..

[70]  M. Skriganov,et al.  Explicit constructions in the classical mean squares problem in irregularities of point distribution , 2002 .

[71]  Vladimir Temlyakov Universality of the fibonacci cubature formulas , 1993 .

[72]  Jan Vybíral,et al.  A New Proof of the Jawerth-Franke Embedding , 2008 .

[73]  Hans-Joachim Bungartz,et al.  A Note on the Complexity of Solving Poisson's Equation for Spaces of Bounded Mixed Derivatives , 1999, J. Complex..

[74]  A. Litvak,et al.  Euclidean projections of a p-convex body , 2000 .

[75]  E. M. Galeev Order Estimates of Derivatives of the Multidimensional Periodic Dirichlet \alpha-KERNEL in a Mixed Norm , 1983 .

[76]  Vladimir Temlyakov,et al.  CAMBRIDGE MONOGRAPHS ON APPLIED AND COMPUTATIONAL MATHEMATICS , 2022 .

[77]  Stefan Kunis,et al.  Fast evaluation of trigonometric polynomials from hyperbolic crosses , 2006, Numerical Algorithms.

[78]  A. D. Izaak Kolmogorov widths in finite-dimensional spaces with mixed norms , 1994 .

[79]  V. Temlyakov,et al.  Remez-type inequalities for the hyperbolic cross polynomials , 2016, 1606.03773.

[80]  V V Dubinin Cubature formulae for Besov classes , 1997 .

[81]  Robert J. Kunsch Bernstein Numbers and Lower Bounds for the Monte Carlo Error , 2014, MCQMC.

[82]  V N Temlyakov,et al.  Approximation of Periodic Functions of Several Variables by Trigonometric Polynomials, and Widths of Some Classes of Functions , 1986 .

[83]  Ahmed E. Radwan,et al.  δβ-I APPROXIMATION SPACES , 2017 .

[84]  Stefan Heinrich Some open problems concerning the star-discrepancy , 2003, J. Complex..

[85]  Erich Novak,et al.  Some Results on the Complexity of Numerical Integration , 2014, MCQMC.

[86]  E. Gluskin EXTREMAL PROPERTIES OF ORTHOGONAL PARALLELEPIPEDS AND THEIR APPLICATIONS TO THE GEOMETRY OF BANACH SPACES , 1989 .

[87]  H. Wozniakowski Average case complexity of linear multivariate problems , 1993, math/9307234.

[88]  Albert Cohen,et al.  RECOVERY OF FUNCTIONS OF MANY VARIABLES VIA COMPRESSIVE SENSING , 2011 .

[89]  Tino Ullrich,et al.  Haar projection numbers and failure of unconditional convergence in Sobolev spaces , 2015, Mathematische Zeitschrift.

[90]  Vladimir N. Temlyakov An Inequality for Trigonometric Polynomials and Its Application for Estimating the Entropy Numbers , 1995, J. Complex..

[91]  E. S. Belinskii Approximation of functions of several variables by trigonometric polynomials with given number of harmonics, and estimates of ε-entropy , 1989 .

[92]  H. Triebel,et al.  Topics in Fourier Analysis and Function Spaces , 1987 .

[93]  Steffen Dereich,et al.  Infinite-Dimensional Quadrature and Approximation of Distributions , 2009, Found. Comput. Math..

[94]  Charles A. Micchelli,et al.  Corrigendum to "Multivariate approximation by translates of the Korobov function on Smolyak grids" [J. Complexity 29 (2013) 424-437] , 2016, J. Complex..

[95]  Jan Vybíral,et al.  The Jawerth–Franke Embedding of Spaces with Dominating Mixed Smoothness , 2009 .

[96]  Grzegorz W. Wasilkowski,et al.  Liberating the Dimension for Function Approximation and Integration , 2012 .

[97]  E. Haacke Sequences , 2005 .

[98]  M. Levin,et al.  On the lower bound of the discrepancy of $(t,s)$ sequences: II , 2015, 1505.06610.

[99]  H. Wozniakowski,et al.  A new algorithm and worst case complexity for Feynman-Kac path integration , 2000 .

[100]  A. S. Romanyuk,et al.  Asymptotic estimates for the best trigonometric and bilinear approximations of classes of functions of several variables , 2010 .

[101]  M. Nikolskii,et al.  Approximation of Functions of Several Variables and Embedding Theorems , 1971 .

[102]  Dinh Dung,et al.  Continuous Algorithms in n-Term Approximation and Non-Linear Widths , 2000 .

[103]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[104]  Andrej Yu. Garnaev,et al.  On widths of the Euclidean Ball , 1984 .

[105]  Dinh Dung,et al.  Linear collective collocation and Galerkin approximations for parametric and stochastic elliptic PDEs , 2015, 1511.03377.

[106]  Michael Griebel,et al.  Optimized general sparse grid approximation spaces for operator equations , 2009, Math. Comput..

[107]  Din' Zung Approximation of classes of smooth functions of several variables , 1986 .

[108]  Christopher Kacwin,et al.  Realization of the Frolov cubature formula via orthogonal Chebyshev-Frolov lattices , 2016 .

[109]  R. DeVore,et al.  Nonlinear Approximation by Trigonometric Sums , 1995 .

[110]  M. Lacey,et al.  On the Small Ball Inequality in All Dimensions , 2007, 0705.4619.

[111]  N. S. Bakhvalov A lower bound for the asymptotic characteristics of classes of functions with dominating mixed derivative , 1972 .

[112]  N. Temirgaliev,et al.  General algorithm for the numerical integration of functions of several variables , 2014 .

[113]  Patrick L. Combettes,et al.  Kolmogorov n-Widths of Function Classes Induced by a Non-Degenerate Differential Operator: A Convex Duality Approach , 2014, 1412.6400.

[114]  Reinhold Schneider,et al.  Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , 2014, J. Complex..

[115]  S. Foucart Sparse Recovery Algorithms: Sufficient Conditions in Terms of RestrictedIsometry Constants , 2012 .

[116]  D. Dung B-Spline Quasi-Interpolation Sampling Representation and Sampling Recovery in Sobolev Spaces of Mixed Smoothness , 2016, 1603.01937.

[117]  Vladimir Temlyakov,et al.  Constructive sparse trigonometric approximation and other problems for functions with mixed smoothness , 2014, 1412.8647.

[118]  Michael Gnewuch,et al.  Optimal Randomized Multilevel Algorithms for Infinite-Dimensional Integration on Function Spaces with ANOVA-Type Decomposition , 2012, SIAM J. Numer. Anal..

[119]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[120]  M. Griebel Sparse Grids and Related Approximation Schemes for Higher Dimensional Problems , 2006 .

[121]  V. Tikhomirov,et al.  DIAMETERS OF SETS IN FUNCTION SPACES AND THE THEORY OF BEST APPROXIMATIONS , 1960 .

[122]  Michael Gnewuch,et al.  Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher-Order Convergence , 2012, Found. Comput. Math..

[123]  C. Chui,et al.  A natural formulation of quasi-interpolation by multivariate splines , 1987 .

[124]  Erich Novak,et al.  A Universal Algorithm for Multivariate Integration , 2015, Found. Comput. Math..

[125]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[126]  Ronald A. DeVore,et al.  Some remarks on greedy algorithms , 1996, Adv. Comput. Math..

[127]  V. Temlyakov Estimates of best bilinear approximations of functions and approximation numbers of integral operators , 1992 .

[128]  Tino Ullrich,et al.  Function Spaces with Dominating Mixed Smoothness Characterization by Differences , 2006 .

[129]  I. V. Vilenkin Plane nets of integration , 1967 .

[130]  Winfried Sickel,et al.  Best m-term approximation and Lizorkin-Triebel spaces , 2011, J. Approx. Theory.

[131]  Vladimir Temlyakov,et al.  Estimate of approximate characteristics for classes of functions with bounded mixed derivative , 1995 .

[132]  Annie A. M. Cuyt,et al.  Approximation Theory , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[133]  Vladimir Temlyakov,et al.  On universal estimators in learning theory , 2006 .

[134]  Michael Gnewuch,et al.  Infinite-dimensional integration on weighted Hilbert spaces , 2012, Math. Comput..

[135]  A. S. Romanyuk,et al.  Approximation of classes of periodic functions of several variables , 1992 .

[136]  Fred J. Hickernell,et al.  Multi-level Monte Carlo algorithms for infinite-dimensional integration on RN , 2010, J. Complex..

[137]  Lutz Kämmerer,et al.  Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness , 2015, Numerische Mathematik.

[138]  Lutz Kämmerer,et al.  Reconstructing Hyperbolic Cross Trigonometric Polynomials by Sampling along Rank-1 Lattices , 2013, SIAM J. Numer. Anal..

[139]  Van Kien Nguyen,et al.  Bernstein numbers of embeddings of isotropic and dominating mixed Besov spaces , 2014, 1411.7246.

[140]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[141]  A. Romanyuk,et al.  Kolmogorov and trigonometric widths of the Besov classes $ B^r_{p,\theta}$ of multivariate periodic functions , 2006 .

[142]  Lev Markhasin,et al.  Discrepancy and integration in function spaces with dominating mixed smoothness , 2013, 1307.2114.

[143]  Din' Zung,et al.  Best linear methods for approximation of classes of periodic functions of several variables , 1987 .

[144]  G. Faber Über stetige Funktionen , 1908 .

[145]  Tino Ullrich,et al.  N-Widths and ε-Dimensions for High-Dimensional Approximations , 2013, Found. Comput. Math..

[146]  Roger C. Baker On Irregularities of Distribution , 1978 .

[147]  R. V. Gamkrelidze,et al.  Analysis II : Convex Analysis and Approximation Theory , 2019 .

[148]  Fred J. Hickernell,et al.  Deterministic multi-level algorithms for infinite-dimensional integration on RN , 2011, J. Complex..

[149]  Benjamin Doerr,et al.  A lower bound for the discrepancy of a random point set , 2012, J. Complex..

[150]  É. M. Galeev Orders of the orthoprojection widths of classes of periodic functions of one and of several variables , 1988 .

[151]  Henryk Wozniakowski,et al.  Quasi-polynomial tractability , 2011, J. Complex..

[152]  Thomas Kühn,et al.  Metric Entropy of Integration Operators and Small Ball Probabilities for the Brownian Sheet , 1999 .

[153]  Vladimir Temlyakov On Two Problems in the Multivariate Approximation , 1997 .

[154]  N. S. Nikol'skaya The approximation in the Lp metric of differentiable functions of several variables by Fourier sums , 1974 .

[155]  V. Temlyakov,et al.  On bestm-term approximations and the entropy of sets in the spaceL1 , 1994 .

[156]  Winfried Sickel,et al.  Weyl numbers of embeddings of tensor product Besov spaces , 2014, J. Approx. Theory.

[157]  K. Hallatschek Fouriertransformation auf dünnen Gittern mit hierarchischen Basen , 1992 .

[158]  Michael Gnewuch,et al.  Optimal randomized changing dimension algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition , 2014, J. Approx. Theory.

[159]  Vladimir N. Temlyakov,et al.  On the entropy numbers of the mixed smoothness function classes , 2016, J. Approx. Theory.

[160]  A S Romanyuk Best approximations and widths of classes of periodic functions of several variables , 2008 .

[161]  I. Sloan,et al.  Lattice Rules for Multivariate Approximation in the Worst Case Setting , 2006 .

[162]  Winfried Sickel,et al.  Approximation numbers of Sobolev embeddings - Sharp constants and tractability , 2014, J. Complex..

[163]  Vladimir N. Temlyakov,et al.  Nonlinear Methods of Approximation , 2003, Found. Comput. Math..

[164]  É. M. Galeev Widths of the Besov Classes Bp,θr(Td) , 2001 .

[165]  V. Temlyakov,et al.  Greedy Algorithms with Regard to Multivariate Systems with Special Structure , 1997 .

[166]  Fred J. Hickernell,et al.  The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension , 2002, Math. Comput..

[167]  N. M. Korobov Double trigonometric sums and their application in approximating rational sums , 1969 .

[168]  D. Dung,et al.  ON NONLINEAR n -WIDTHS , 1996 .

[169]  Wolfgang Dahmen,et al.  Approximation of High-Dimensional Rank One Tensors , 2013, Constructive Approximation.

[170]  S. A. Stasyuk Best approximation of periodic functions of several variables from the classes $ MB_{{p,\theta }}^{\omega } $ , 2012 .

[171]  Erich Novak,et al.  Tractability of the Approximation of High-Dimensional Rank One Tensors , 2014, Constructive Approximation.

[172]  R. M. Trigub,et al.  Some Topics in Fourier Analysis and Approximation Theory , 1996, funct-an/9612008.

[173]  T. Ullrich Smolyak ’ s Algorithm , Sampling on Sparse Grids and Sobolev Spaces of Dominating Mixed Smoothness , 2006 .

[174]  S. M. Voronin,et al.  Quadrature formulas associated with divisors of the field of Gaussian numbers , 1989 .

[175]  Albert Cohen,et al.  Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients , 2015, 1509.07050.

[176]  V. N. Temli︠a︡kov Approximation of functions with bounded mixed derivative , 1989 .

[177]  Christoph Aistleitner,et al.  Covering numbers, dyadic chaining and discrepancy , 2011, J. Complex..

[178]  Nurlan Nauryzbayev,et al.  An Exact Order of Discrepancy of the Smolyak Grid and Some General Conclusions in the Theory of Numerical Integration , 2012, Found. Comput. Math..

[179]  N. Temirgaliev,et al.  Applications of Smolyak quadrature formulas to the numerical integration of Fourier coefficients and in function recovery problems , 2010 .

[180]  Zhi-Wei Sun On covering numbers , 2006 .

[181]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[182]  R. S. Ismagilov,et al.  DIAMETERS OF SETS IN NORMED LINEAR SPACES AND THE APPROXIMATION OF FUNCTIONS BY TRIGONOMETRIC POLYNOMIALS , 1974 .

[183]  Nikolai Sergeevich Bakhvalov,et al.  On the approximate calculation of multiple integrals , 2015, J. Complex..

[184]  V. E. Maiorov Trigonometric diameters of the Sobolev classes Wpr in the space Lq , 1986 .

[185]  Erich Novak,et al.  High dimensional polynomial interpolation on sparse grids , 2000, Adv. Comput. Math..

[186]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[187]  C. D. Boor,et al.  Spline approximation by quasiinterpolants , 1973 .

[188]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .

[189]  Mario Ullrich,et al.  A Monte Carlo Method for Integration of Multivariate Smooth Functions , 2016, SIAM J. Numer. Anal..

[190]  E. Schmidt Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .

[191]  S. Kudryavtsev Diameters of classes of smooth functions , 1995 .

[192]  É. M. Galeev Linear widths of Hölder-Nikol'skii classes of periodic functions of several variables , 1996 .

[193]  V. N. Temlyakov,et al.  Approximation of functions of several variables by trigonometric polynomials with harmonics from hyperbolic crosses , 1989 .

[194]  Jens Oettershagen,et al.  On the orthogonality of the Chebyshev–Frolov lattice and applications , 2016, 1606.00492.

[195]  rer. nat. habil. Haroske,et al.  Entropy numbers and approximation numbers in weighted function spaces of type Bsp,q and Fsp,q, eigenvalue distributions of some degenerate pseudodifferential operators , 1995 .

[196]  Winfried Sickel,et al.  Optimal approximation of multivariate periodic Sobolev functions in the sup-norm , 2015, 1505.02636.

[197]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[198]  Werner Linde,et al.  Small Deviations of Gaussian Random Fields in $L_q$-Spaces , 2006 .

[199]  K. Ritter,et al.  High dimensional integration of smooth functions over cubes , 1996 .

[200]  Vladimir N. Temlyakov,et al.  Nonlinear tensor product approximation of functions , 2014, J. Complex..

[201]  A. S. Romanyuk Linear Widths of the Besov Classes of Periodic Functions of Many Variables. I , 2001 .

[202]  Holger Rauhut,et al.  The Gelfand widths of ℓp-balls for 0 , 2010, ArXiv.

[203]  V. Temlyakov ESTIMATES OF THE BEST BILINEAR APPROXIMATIONS OF FUNCTIONS OF TWO VARIABLES AND SOME OF THEIR APPLICATIONS , 1989 .

[204]  Stephen J. Dilworth,et al.  Convergence of Some Greedy Algorithms in Banach Spaces , 2002 .

[205]  Winfried Sickel,et al.  Best m-Term Approximation and Sobolev–Besov Spaces of Dominating Mixed Smoothness—the Case of Compact Embeddings , 2012 .

[206]  Vladimir N. Temlyakov,et al.  Greedy algorithms in Banach spaces , 2001, Adv. Comput. Math..

[207]  É. M. Galeev Approximation of classes of periodic functions of several variables by nuclear operators , 1990 .

[208]  P L Ul'janov IMBEDDING THEOREMS AND RELATIONS BETWEEN BEST APPROXIMATIONS (MODULI OF CONTINUITY) IN DIFFERENT METRICS , 1970 .

[209]  B. Jawerth,et al.  A discrete transform and decompositions of distribution spaces , 1990 .

[210]  V N Temlyakov APPROXIMATION OF FUNCTIONS WITH A BOUNDED MIXED DIFFERENCE BY TRIGONOMETRIC POLYNOMIALS, AND THE WIDTHS OF SOME CLASSES OF FUNCTIONS , 1983 .

[211]  Michael Griebel,et al.  Hyperbolic cross approximation in infinite dimensions , 2015, J. Complex..

[212]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[213]  Dinh Dng B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness , 2011 .

[214]  Hans Triebel,et al.  Global solutions of Navier-Stokes equations for large initial data belonging to spaces with dominating mixed smoothness , 2015, J. Complex..

[215]  David E. Edmunds,et al.  Entropy numbers of embeddings of Sobolev spaces in Zygmund spaces , 1998 .

[216]  Wolfgang Dahmen,et al.  Universal Algorithms for Learning Theory Part I : Piecewise Constant Functions , 2005, J. Mach. Learn. Res..

[217]  S. A. Stasyuk Best m-term approximation of the classes$$ B_{\infty, \theta }^r $$ of functions of many variables by polynomials in the haar system , 2011 .

[218]  N. N. Pustovoitov On best approximations by analogs of “proper” and “improper” hyperbolic crosses , 2013 .

[219]  N. N. Pustovoitov,et al.  Multidimensional Jackson theorem in the L2 SPACE , 1991 .

[220]  W. Sickel,et al.  Spline interpolation on sparse grids , 2011 .

[221]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[222]  B. Carl Entropy numbers, s-numbers, and eigenvalue problems , 1981 .

[223]  Joel Ratsaby,et al.  On the Degree of Approximation by Manifolds of Finite Pseudo-Dimension , 1999 .

[224]  A S Romanyuk Best $ M$-term trigonometric approximations of Besov classes of periodic functions of several variables , 2003 .

[225]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[226]  Björn Jawerth,et al.  Some observations on Besov and Lizorkin-Triebel spaces. , 1977 .

[227]  É. M. Galeev The Kolmogorov diameter of the intersection of classes of periodic functions and of finite-dimensional sets , 1981 .

[228]  V. Temlyakov Greedy-Type Approximation in Banach Spaces and Applications , 2005 .

[229]  Ya.M. Zhileikii,et al.  Quadrature formulae on classes of functions , 1968 .

[230]  Vladimir N. Temlyakov,et al.  An inequality for the entropy numbers and its application , 2013, J. Approx. Theory.

[231]  V. Temlyakov,et al.  SPARSE APPROXIMATION AND RECOVERY BY GREEDY ALGORITHMS IN BANACH SPACES , 2013, Forum of Mathematics, Sigma.

[232]  Lutz Kämmerer,et al.  Interpolation lattices for hyperbolic cross trigonometric polynomials , 2012, J. Complex..

[233]  Thomas Kühn,et al.  A Lower Estimate for Entropy Numbers , 2001, J. Approx. Theory.

[234]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[235]  A. Pinkus n-Widths in Approximation Theory , 1985 .

[236]  B. Carl,et al.  Gelfand numbers of operators with values in a Hilbert space , 1988 .

[237]  Lutz Kämmerer,et al.  On the stability of the hyperbolic cross discrete Fourier transform , 2011, Numerische Mathematik.

[238]  Din' Zung,et al.  Mean ε-dimension of the functional class BG, P , 1980 .

[239]  H. Davenport Note on irregularities of distribution , 1956 .

[240]  Vladimir Temlyakov,et al.  ON A WAY OF OBTAINING LOWER ESTIMATES FOR THE ERRORS OF QUADRATURE FORMULAS , 1992 .

[241]  D. Dung Best multivariate approximations by trigonometric polynomials with frequencies from hyperbolic crosses , 1997 .

[242]  A. Pajor,et al.  Subspaces of small codimension of finite-dimensional Banach spaces , 1986 .

[243]  Peter Mathé s-Numbers in information-based complexity , 1990, J. Complex..

[244]  D. B. Bazarkhanov,et al.  Nonlinear trigonometric approximations of multivariate function classes , 2016 .

[245]  D. Potts,et al.  Approximation of multivariate functions by trigonometric polynomials based on rank-1 lattice sampling , 2013 .

[246]  E. Novak,et al.  Tractability of Multivariate Problems , 2008 .

[247]  T. Ullrich,et al.  Optimal sampling recovery of mixed order Sobolev embeddings via discrete Littlewood–Paley type characterizations , 2016, 1603.04809.

[248]  A. Romanyuk,et al.  Bilinear and trigonometric approximations of periodic functions of several variables of Besov classes?$ B_{p, \theta}^r$ , 2006 .

[249]  H. Wozniakowski,et al.  On tractability of path integration , 1996 .

[250]  H. Triebel Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration , 2010 .

[251]  Vladimir Temlyakov,et al.  APPROXIMATE RECOVERY OF PERIODIC FUNCTIONS OF SEVERAL VARIABLES , 1987 .

[252]  V. Milman,et al.  New volume ratio properties for convex symmetric bodies in ℝn , 1987 .

[253]  Jan Vybíral,et al.  Widths of embeddings in function spaces , 2008, J. Complex..

[254]  B. Carl,et al.  Entropy, Compactness and the Approximation of Operators , 1990 .

[255]  Michael Gnewuch,et al.  On weighted Hilbert spaces and integration of functions of infinitely many variables , 2014, J. Complex..

[256]  Y Makovoz On trigonometric n-widths and their generalization , 1984 .

[257]  A. Kolmogoroff,et al.  Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse , 1936 .

[258]  Takashi Goda,et al.  Optimal order quasi-Monte Carlo integration in weighted Sobolev spaces of arbitrary smoothness , 2015 .

[259]  V A Rvachev,et al.  Compactly supported solutions of functional-differential equations and their applications , 1990 .

[260]  N. Temirgaliev Tensor products of functionals and their application , 2010 .

[261]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[262]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[263]  Alexey Chernov,et al.  New explicit-in-dimension estimates for the cardinality of high-dimensional hyperbolic crosses and approximation of functions having mixed smoothness , 2013, J. Complex..

[264]  Van Kien Nguyen,et al.  Change of Variable in Spaces of Mixed Smoothness and Numerical Integration of Multivariate Functions on the Unit Cube , 2015 .

[265]  Joel Ratsaby,et al.  The Degree of Approximation of Sets in Euclidean Space Using Sets with Bounded Vapnik-Chervonenkis Dimension , 1998, Discret. Appl. Math..

[266]  Takashi Goda,et al.  An Explicit Construction of Optimal Order Quasi-Monte Carlo Rules for Smooth Integrands , 2016, SIAM J. Numer. Anal..

[267]  Aicke Hinrichs,et al.  Optimal Point Sets for Quasi-Monte Carlo Integration of Bivariate Periodic Functions with Bounded Mixed Derivatives , 2014, MCQMC.

[268]  V M Tikhomirov,et al.  SOME APPROXIMATION CHARACTERISTICS OF THE CLASSES OF SMOOTH FUNCTIONS OF SEVERAL VARIABLES IN THE METRIC OF , 2016 .

[269]  Vladimir Temlyakov,et al.  On a certain norm and related applications , 1998 .

[270]  Vladimir N. Temlyakov,et al.  The best m-term approximation and greedy algorithms , 1998, Adv. Comput. Math..

[271]  N. Temirgaliev,et al.  An application of tensor products of functionals in problems of numerical integration , 2009 .

[272]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[273]  C. Schütt Entropy numbers of diagonal operators between symmetric Banach spaces , 1984 .

[274]  M. Lacey,et al.  On the small ball inequality in three dimensions , 2006, math/0609815.

[275]  Vladimir Temlyakov,et al.  Universal bases and greedy algorithms for anisotropic function classes , 2002 .

[276]  Albert Cohen,et al.  Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.

[277]  R. DeVore,et al.  Optimal nonlinear approximation , 1989 .

[278]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[279]  E. Novak,et al.  The inverse of the star-discrepancy depends linearly on the dimension , 2001 .

[280]  Michel Talagrand,et al.  The Small Ball Problem for the Brownian Sheet , 1994 .

[281]  E. Gluskin NORMS OF RANDOM MATRICES AND WIDTHS OF FINITE-DIMENSIONAL SETS , 1984 .

[282]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[283]  Albrecht Pietsch Bad properties of the Bernstein numbers , 2008 .

[284]  K. Babenko Some problems in approximation theory and numerical analysis , 1985 .

[285]  Winfried Sickel,et al.  Spaces of functions of mixed smoothness and approximation from hyperbolic crosses , 2004, J. Approx. Theory.

[286]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[287]  B. V. Simonov,et al.  Mixed Moduli of Smoothness in $L_p$, $1 , 2013, 1304.3329.

[288]  V. Temlyakov Approximation by elements of a finite-dimensional subspace of functions from various sobolev or nikol'skii spaces , 1988 .

[289]  Дауренбек Болысбекович Базарханов,et al.  Оценки поперечников Фурье классов типа Никольского - Бесова и Лизоркина - Трибеля периодических функций многих переменных@@@Estimates of the Fourier Widths of Classes of Nikolskii - Besov and Lizorkin - Triebel Types of Periodic Functions of Several Variables , 2010 .

[290]  Henryk Wozniakowski,et al.  Liberating the dimension for function approximation: Standard information , 2011, J. Complex..

[291]  Dinh Dung Asymptotic orders of optimal non-linear approximations , 2001 .

[292]  Winfried Sickel,et al.  Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross , 2009, J. Approx. Theory.

[293]  Leah Blau,et al.  Fourier Analysis And Approximation Of Functions , 2016 .

[294]  Stefan Heinrich On the relation between linear n -widths and approximation numbers , 1989 .

[295]  Boolean methods in interpolation and approximation , 1991 .

[296]  E. S. Belinskii Decomposition theorems and approximation by a “floating" system of exponentials , 1998 .

[297]  M. Levin,et al.  On the lower bound of the discrepancy of Halton’s sequence II , 2016, European Journal of Mathematics.

[298]  Winfried Sickel,et al.  Interpolation on Sparse Grids and Nikol'skijbesov Spaces of Dominating Mixed Smoothness Running Title: Interpolation on Sparse Grids and Nikol'skijjbesov Spaces , 2007 .

[299]  Sh. A. Balgimbayeva,et al.  Nonlinear approximation of function spaces of mixed smoothness , 2015 .

[300]  W. Sickel Approximation from sparse grids and function spaces of dominating mixed smoothness , 2006 .

[301]  Din' Zung APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS OF FUNCTIONS OF SEVERAL VARIABLES ON THE TORUS , 1988 .

[302]  W. Sickel,et al.  Approximation of Mixed Order Sobolev Functions on the d-Torus: Asymptotics, Preasymptotics, and d-Dependence , 2013, 1312.6386.

[303]  R. DeVore,et al.  Hyperbolic Wavelet Approximation , 1998 .

[304]  Lutz Kämmerer,et al.  Approximation of multivariate periodic functions by trigonometric polynomials based on sampling along rank-1 lattice with generating vector of Korobov form , 2015, J. Complex..

[305]  Charles A. Micchelli,et al.  Multivariate approximation by translates of the Korobov function on Smolyak grids , 2013, J. Complex..

[306]  Мирболат Бакытжанович Сихов,et al.  Об алгоритме построения равномерно распределенных сеток Коробова@@@On an Algorithm for Constructing Uniformly Distributed Korobov Grids , 2010 .

[307]  Aicke Hinrichs Discrepancy of Hammersley points in Besov spaces of dominating mixed smoothness , 2010 .

[308]  Mario Ullrich,et al.  The Role of Frolov's Cubature Formula for Functions with Bounded Mixed Derivative , 2015, SIAM J. Numer. Anal..

[309]  Mykhailo V. Hembars’kyi,et al.  Approximate characteristics of the classes $$ {B}_{p,\theta}^{\Omega} $$ of periodic functions of one variable and many ones , 2019, Journal of Mathematical Sciences.

[310]  Henryk Wozniakowski,et al.  Tractability through increasing smoothness , 2010, J. Complex..

[311]  A. Romanyuk,et al.  Approximability of the classes B_{p,\theta}^r of periodic functions of several variables by linear methods and best approximations , 2004 .

[312]  Erich Novak,et al.  On weak tractability of the Clenshaw-Curtis Smolyak algorithm , 2014, J. Approx. Theory.

[313]  Габдолла Акишевич Акишев,et al.  Приближение функциональных классов в пространствах со смешанной нормой@@@Approximation of function classes in spaces with mixed norm , 2006 .