Structure and Freezing of MgSiO3 Liquid in Earth's Lower Mantle

First-principles molecular-dynamics simulations show that over the pressure regime of Earth's mantle the mean silicon-oxygen coordination number of magnesium metasilicate liquid changes nearly linearly from 4 to 6. The density contrast between liquid and crystal decreases by a factor of nearly 5 over the mantle pressure regime and is 4% at the core-mantle boundary. The ab initio melting curve, obtained by integration of the Clausius-Clapeyron equation, yields a melting temperature at the core-mantle boundary of 5400 ± 600 kelvins.

[1]  Lars Stixrude,et al.  Thermodynamics of mantle minerals – I. Physical properties , 2005 .

[2]  R. Ahuja,et al.  High-pressure melting of MgSiO3. , 2005, Physical review letters.

[3]  D. Alfé Melting curve of MgO from first-principles simulations. , 2005, Physical review letters.

[4]  J. Tsuchiya,et al.  Phase transition in MgSiO 3 perovskite in the earth's lower mantle , 2004 .

[5]  T. Ahrens,et al.  Shock‐induced melting of MgSiO3 perovskite and implications for melts in Earth's lowermost mantle , 2004 .

[6]  Stefano de Gironcoli,et al.  Thermoelastic properties of MgSiO(3)-perovskite: insights on the nature of the Earth's lower mantle. , 2004, Physical review letters.

[7]  M. Gillan,et al.  The properties of iron under core conditions from first principles calculations , 2003 .

[8]  G. D. Price,et al.  The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle , 2001, Nature.

[9]  G. Miller,et al.  CONSTRAINTS FROM MOLECULAR DYNAMICS ON THE LIQUIDUS AND SOLIDUS OF THE LOWER MANTLE , 1997 .

[10]  E. Garnero,et al.  Seismic Evidence for Partial Melt at the Base of Earth's Mantle , 1996, Science.

[11]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[12]  R. Jeanloz,et al.  Melting criteria and imaging spectroradiometry in laser-heated diamond-cell experiments , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  R. Boehler MELTING TEMPERATURE OF THE EARTH'S MANTLE AND CORE: Earth's Thermal Structure , 1996 .

[14]  M. Matsui Molecular dynamics simulation of structures, bulk moduli, and volume thermal expansivities of silicate liquids in the system CaO‐MgO‐Al2O3‐SiO2 , 1996 .

[15]  A. Zerr,et al.  Melting of (Mg, Fe)SiO3-Perovskite to 625 Kilobars: Indication of a High Melting Temperature in the Lower Mantle , 1993, Science.

[16]  J. S. Sweeney,et al.  Melting of iron‐magnesium‐silicate perovskite , 1993 .

[17]  G. Kresse,et al.  Optimized norm-conserving pseudopotentials , 1992 .

[18]  Y. Syono,et al.  High-pressure research : application to earth and planetary sciences , 1992 .

[19]  T. Ahrens,et al.  The equation of state of a molten komatiite: 1 Shock wave compression to 36 GPa , 1991 .

[20]  David A. Young,et al.  Phase Diagrams of the Elements , 1991 .

[21]  H. G. Petersen,et al.  Error estimates on averages of correlated data , 1989 .

[22]  R. Jeanloz,et al.  Melting curve of (Mg,Fe)SiO3 perovskite to 96 GPa: Evidence for a structural transition in lower mantle melts , 1989 .

[23]  R. Jeanloz,et al.  Spectroscopic Evidence for Pressure-Induced Coordination Changes in Silicate Glasses and Melts , 1988, Science.

[24]  R. Lange,et al.  Densities of Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-TiO2-SiO2 liquids: New measurements and derived partial molar properties , 1987 .

[25]  Raymond Jeanloz,et al.  Temperature distribution in the crust and mantle , 1986 .

[26]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[27]  J. Stebbins,et al.  Heat capacities and entropies of silicate liquids and glasses , 1984 .

[28]  Reinhard Boehler,et al.  Pressure dependence of the thermodynamical Grüneisen parameter of fluids , 1977 .

[29]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .