Asymptotically almost all \lambda-terms are strongly normalizing
暂无分享,去创建一个
Christophe Raffalli | Guillaume Theyssier | Katarzyna Grygiel | Marek Zaionc | René David | Jakub Kozic
[1] Danièle Gardy. Random Boolean expressions , 2005 .
[2] Marek Zaionc. On the Asymptotic Density of Tautologies in Logic of Implication and Negation , 2005, Reports Math. Log..
[3] Danièle Gardy,et al. Classical and Intuitionistic Logic Are Asymptotically Identical , 2007, CSL.
[4] Antoine Genitrini,et al. Intuitionistic vs. Classical Tautologies, Quantitative Comparison , 2007, TYPES.
[5] Jerzy Tyszkiewicz,et al. Statistical properties of simple types , 2000, Mathematical Structures in Computer Science.
[6] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[7] Guillaume Theyssier,et al. ON LOCAL SYMMETRIES AND UNIVERSALITY IN CELLULAR , 2009 .
[8] William C. Frederick,et al. A Combinatory Logic , 1995 .
[9] René David,et al. Normalization without reducibility , 2001, Ann. Pure Appl. Log..
[10] Marek Zaionc,et al. Probability distribution for simple tautologies , 2006, Theor. Comput. Sci..
[11] Zofia Kostrzycka,et al. Statistics of Intuitionistic versus Classical Logics , 2004, Stud Logica.
[12] Philippe Flajolet,et al. And/Or Trees Revisited , 2004, Comb. Probab. Comput..
[13] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[14] Joel David Hamkins,et al. The Halting Problem Is Decidable on a Set of Asymptotic Probability One , 2006, Notre Dame J. Formal Log..
[15] Alexander N. Rybalov. On the strongly generic undecidability of the Halting Problem , 2007, Theor. Comput. Sci..
[16] M. Schönfinkel. Über die Bausteine der mathematischen Logik , 1924 .
[17] Guillaume Theyssier,et al. On Local Symmetries And Universality In Cellular Autmata , 2009, STACS.
[18] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[19] Danièle Gardy,et al. And/or tree probabilities of Boolean functions , 2005 .
[20] Hanno Lefmann,et al. Some typical properties of large AND/OR Boolean formulas , 1997, Random Struct. Algorithms.
[21] Karim Nour,et al. A short proof of the strong normalization of the simply typed $\lambda\mu$-calculus , 2003, LICS 2003.
[22] Hanno Lefmann,et al. Some typical properties of large AND/OR Boolean formulas , 1997 .
[23] Laurent Regnier,et al. Une équivalence sur les lambda-termes , 1994, Theor. Comput. Sci..
[24] R. Smullyan. To mock a mockingbird and other logic puzzles : including an amazing adventure in combinatory logic , 1985 .
[25] Antoine Genitrini,et al. Quantitative Comparison of Intuitionistic and Classical Logics - Full Propositional System , 2009, LFCS.