All good things come in threes - Three beads learn to swim with lattice Boltzmann and a rigid body solver

We simulate the self-propulsion of devices in a fluid in the regime of low Reynolds numbers. Each device consists of three bodies (spheres or capsules) connected with two damped harmonic springs. Sinusoidal driving forces compress the springs which are resolved within a rigid body physics engine. The latter is consistently coupled to a 3D lattice Boltzmann framework for the fluid dynamics. In simulations of three-sphere devices, we find that the propulsion velocity agrees well with theoretical predictions. In simulations where some or all spheres are replaced by capsules, we find that the asymmetry of the design strongly affects the propelling efficiency.

[1]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[2]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[3]  Alfonso Caiazzo,et al.  Boundary forces in lattice Boltzmann: Analysis of Momentum Exchange algorithm , 2008, Comput. Math. Appl..

[4]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[5]  Vincent Marceau,et al.  Swarm behavior of self-propelled rods and swimming flagella. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  M. J. Lighthill,et al.  On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers , 1952 .

[7]  Klaus Iglberger Software Design of a Massively Parallel Rigid Body Framework , 2010 .

[8]  Pierre Lallemand,et al.  Consistent initial conditions for lattice Boltzmann simulations , 2006 .

[9]  G. Taylor Analysis of the swimming of microscopic organisms , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  M. Anitescu,et al.  Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems , 1997 .

[11]  C. M. Pooley,et al.  Lattice Boltzmann simulation techniques for simulating microscopic swimmers , 2008, Comput. Phys. Commun..

[12]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[13]  Ulrich Rüde,et al.  Massively parallel granular flow simulations with non-spherical particles , 2010, Computer Science - Research and Development.

[14]  W. Shyy,et al.  Viscous flow computations with the method of lattice Boltzmann equation , 2003 .

[15]  A. Najafi,et al.  Simple swimmer at low Reynolds number: three linked spheres. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Ulrich Rüde,et al.  Coupling multibody dynamics and computational fluid dynamics on 8192 processor cores , 2010, Parallel Comput..

[17]  Ulrich Rüde,et al.  Lehrstuhl Für Informatik 10 (systemsimulation) Walberla: Hpc Software Design for Computational Engineering Simulations Walberla: Hpc Software Design for Computational Engineering Simulations , 2010 .

[18]  O. Velev,et al.  Remotely powered self-propelling particles and micropumps based on miniature diodes. , 2007, Nature materials.

[19]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[20]  J. Yeomans,et al.  Hydrodynamic Synchronisation of Model Microswimmers , 2009, 0907.1542.

[21]  Ulrich Rüde,et al.  Optimization and Profiling of the Cache Performance of Parallel Lattice Boltzmann Codes in 2 D and 3 D ∗ , 2003 .

[22]  P. Lallemand,et al.  Lattice Boltzmann method for moving boundaries , 2003 .

[23]  A. DeSimone,et al.  Optimal strokes for axisymmetric microswimmers , 2009, The European physical journal. E, Soft matter.

[24]  E. Purcell Life at Low Reynolds Number , 2008 .

[25]  Cyrus K. Aidun,et al.  Lattice-Boltzmann Method for Complex Flows , 2010 .

[26]  R. Golestanian,et al.  Hydrodynamic synchronization at low Reynolds number , 2011 .

[27]  Ulrich Rüde,et al.  Parallel Lattice Boltzmann Methods for CFD Applications , 2006 .

[28]  Gerhard Wellein,et al.  On the single processor performance of simple lattice Boltzmann kernels , 2006 .

[29]  Zhaoxia Yang,et al.  Pressure boundary condition for the lattice Boltzmann method , 2009, Comput. Math. Appl..

[30]  Zhaoxia Yang,et al.  Outflow boundary conditions for the lattice Boltzmann method , 2008 .

[31]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[32]  Ulrich Rüde,et al.  Direct Numerical Simulation of Particulate Flows on 294912 Processor Cores , 2010, 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis.

[33]  D. d'Humières,et al.  Two-relaxation-time Lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions , 2008 .

[34]  Ramin Golestanian,et al.  Analytic results for the three-sphere swimmer at low Reynolds number. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Ulrich Rüde,et al.  Simulation of the hydrodynamic drag of aggregated particles. , 2006, Journal of colloid and interface science.

[36]  T. Powers,et al.  The hydrodynamics of swimming microorganisms , 2008, 0812.2887.

[37]  Ulrich Rüde,et al.  Simulation of moving particles in 3D with the Lattice Boltzmann method , 2008, Comput. Math. Appl..

[38]  J. F. Ryder,et al.  Modeling microscopic swimmers at low Reynolds number. , 2007, The Journal of chemical physics.

[39]  P. Lallemand,et al.  Momentum transfer of a Boltzmann-lattice fluid with boundaries , 2001 .

[40]  Kristina Pickl,et al.  Lehrstuhl für Informatik 10 ( Systemsimulation ) Rigid Body Dynamics : Links and Joints , 2009 .

[41]  Zhaoxia Yang,et al.  Asymptotic Analysis of Lattice Boltzmann Boundary Conditions , 2005 .

[42]  Michael J. Shelley,et al.  Modeling simple locomotors in Stokes flow , 2010, J. Comput. Phys..

[43]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[44]  Moshe Shoham,et al.  Propulsion Method for Swimming Microrobots , 2007, IEEE Transactions on Robotics.

[45]  Aslak Tveito,et al.  Numerical solution of partial differential equations on parallel computers , 2006 .

[46]  B. U. Felderhof The swimming of animalcules , 2006 .

[47]  Alfonso Caiazzo,et al.  Analysis of lattice Boltzmann nodes initialisation in moving boundary problems , 2008 .

[48]  Alfonso Caiazzo,et al.  Corrected momentum exchange method for lattice Boltzmann simulations of suspension flow. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[50]  Wei Shyy,et al.  Lattice Boltzmann Method for 3-D Flows with Curved Boundary , 2000 .