Integration of complex shapes and natural patterns

The process of generating an image for a computer graphics object is traditionally broken down into three steps: modelling of the shape or geometric attributes (such as height, width, and length), modelling of the visual attributes (how the object is going to look), and an integration step that connects the first two (a visual attribute is defined for every point on the surface of the object). The separation of modelling the shape from modelling the visual attributes makes the whole process highly flexible and powerful; from a conceptual point of view, the process is easier to handle. While generally good for many classes of objects, this separation is prone to problems when the geometry of the object is complex. For example, the mapping of visual characteristics to every point of such complex surfaces is non-trivial. Furthermore, this separation assumes that these two steps are independent of each other, but for some objects, there is an interaction between the shape modelling and visual modelling that plays a significant role on the final image. Typical examples are patterned animals such as giraffes and leopards, where the pattern visible on the fur of an adult animal is the result of a process that took place while the animal was an embryo in the womb. In this case, modelling the interplay between the embryo growth process and the pattern formation process is as important as modelling the individual processes themselves. In this thesis we introduce a novel solution for integrating shape and visual modelling. This solution defines the visual attributes directly on the surface of the object as the object changes shape, for example, due to growth. We present results of applying this solution to a giraffe model. This thesis makes three contributions: (1) a new model of mammalian pattern formation called Clonal Mosaic, suitable for computer graphics purposes and with strong biological plausibility. The model is based on-cell division and cell-to-cell interactions, and it can generate repeating spotted and striped patterns occurring in several species of mammals, especially the big cats and giraffes; (2) a technique to modify the shape of an object based, for example, on a small set of input measurements. The technique consists of defining local coordinate systems (cylinders) around the growing parts of the body, each one being transformed according to the relevant growth data while maintaining their relationship with the adjoining parts and the continuity of the surface. The local coordinates also permit ordinary animation mainly as relative rotation such as in articulated objects; and, (3) the integration of the modelling of Clonal Mosaic patterns with the shape modification technique. Finally, this thesis advances the notion of integration of independent tools as an important development in the field of computer graphics. Individual tools have been reaching exceptional levels of performance and therefore we need efficient ways to integrate them smoothly.

[1]  G. Prota,et al.  Melanins and melanogenesis , 1992 .

[2]  Eric A. Bier,et al.  Two-Part Texture Mappings , 1986, IEEE Computer Graphics and Applications.

[3]  Alain Fournier,et al.  Matching and Interpolation of Shapes using Unions of Circles , 1996, Comput. Graph. Forum.

[4]  Alan Watt,et al.  Advanced animation and rendering techniques , 1992 .

[5]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[6]  J. Bard,et al.  How well does Turing's theory of morphogenesis work? , 1974, Journal of theoretical biology.

[7]  Jeremy S. De Bonet,et al.  Multiresolution sampling procedure for analysis and synthesis of texture images , 1997, SIGGRAPH.

[8]  G. Cocho,et al.  Discrete systems, cell-cell interactions and color pattern of animals. I. Conflicting dynamics and pattern formation. , 1987, Journal of theoretical biology.

[9]  Paul S. Heckbert,et al.  Survey of Texture Mapping , 1986, IEEE Computer Graphics and Applications.

[10]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[11]  Anne Verroust-Blondet,et al.  Interactive texture mapping , 1993, SIGGRAPH.

[12]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[13]  George Oster Mechanochemistry and morphogenesis , 1983 .

[14]  H. Honda Description of cellular patterns by Dirichlet domains: the two-dimensional case. , 1978, Journal of theoretical biology.

[15]  Gavin S. P. Miller,et al.  Efficient techniques for interactive texture placement , 1994, SIGGRAPH.

[16]  P. Alberch,et al.  The mechanical basis of morphogenesis. I. Epithelial folding and invagination. , 1981, Developmental biology.

[17]  J. Bard,et al.  A model for generating aspects of zebra and other mammalian coat patterns. , 1981, Journal of theoretical biology.

[19]  Nestor Burtnyk,et al.  Interactive skeleton techniques for enhancing motion dynamics in key frame animation , 1976, Commun. ACM.

[20]  D. A. Young A local activator-inhibitor model of vertebrate skin patterns , 1984 .

[21]  Thaddeus Beier,et al.  Feature-based image metamorphosis , 1992, SIGGRAPH.

[22]  Brian Wyvill,et al.  Visual simulation of lightning , 1994, SIGGRAPH.

[23]  Andrew Witkin,et al.  Reaction-diffusion textures , 1991, SIGGRAPH.

[24]  I. Epstein,et al.  Modeling of Turing Structures in the Chlorite—Iodide—Malonic Acid—Starch Reaction System , 1991, Science.

[25]  M. D. HILL Animal Coloration. , 1913, Nature.

[26]  李幼升,et al.  Ph , 1989 .

[27]  G. C. Shortridge The Mammals of South West Africa: a Biological Account of the Forms occurring in that Region , 1935, Nature.

[28]  Peter Chambers,et al.  Visualization of solid reaction-diffusion systems , 1995, IEEE Computer Graphics and Applications.

[29]  Hideyuki Tamura,et al.  Textural Features Corresponding to Visual Perception , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[30]  Wayne E. Carlson,et al.  Shape transformation for polyhedral objects , 1992, SIGGRAPH.

[31]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[32]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[33]  Antony G. Searle,et al.  Comparative genetics of coat colour in mammals. , 1968 .

[34]  Edwin Earl Catmull,et al.  A subdivision algorithm for computer display of curved surfaces. , 1974 .

[35]  B. Bertram,et al.  Pride of lions , 1978 .

[36]  David Banks,et al.  Interactive shape metamorphosis , 1995, I3D '95.

[37]  H. Hemmer Gestation period and postnatal development in felids. , 1980 .

[38]  Greg Turk,et al.  Generating random points in triangles , 1990 .

[39]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[40]  Gwynne Vevers,et al.  The nature of animal colours , 1962 .

[41]  Paul S. Heckbert,et al.  Fundamentals of Texture Mapping and Image Warping , 1989 .

[42]  F. David Fracchia,et al.  Integrating Lineage and Interaction for the Visualization of Cellular Stuctures , 1994, TAGT.

[43]  G. Oster,et al.  Mechanical aspects of mesenchymal morphogenesis. , 1983, Journal of embryology and experimental morphology.

[44]  M. Hildebrand Motions of the Running Cheetah and Horse , 1959 .

[45]  William T. Reeves,et al.  Inbetweening for computer animation utilizing moving point constraints , 1981, SIGGRAPH '81.

[46]  David R. Forsey,et al.  Multiresolution Surface Reconstruction for Hierarchical B-splines , 1998, Graphics Interface.

[47]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[48]  A G Jacobson,et al.  The shaping of tissues in embryos. , 1978, Scientific American.

[49]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[50]  Leah Keshet,et al.  Mathematical Models In Biology , 1988 .

[51]  H. Meinhardt Models of biological pattern formation , 1982 .

[52]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[53]  A. Fournier,et al.  Growing and Animating Polygonal Models of Animals , 1997, Comput. Graph. Forum.

[54]  D. Thalmann,et al.  A general algorithms for 3-D shape interpolation in a facet-based representation , 1989 .

[55]  Robert M. O'Bara,et al.  Geometrically deformed models: a method for extracting closed geometric models form volume data , 1991, SIGGRAPH.

[56]  David H. Laidlaw,et al.  Cellular texture generation , 1995, SIGGRAPH.

[57]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[59]  B. Mintz Gene control of mammalian differentiation. , 1974, Annual review of genetics.

[60]  John F. Hughes,et al.  Direct manipulation of free-form deformations , 1992, SIGGRAPH.

[61]  Eadweard Muybridge,et al.  The human figure in motion : an electro-photographic investigation of consecutive phases of muscular actions , 1907 .

[62]  I. Jackson Mouse coat colour mutations: A molecular genetic resource which spans the centuries , 1991, BioEssays : news and reviews in molecular, cellular and developmental biology.

[63]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[64]  Ken Perlin,et al.  [Computer Graphics]: Three-Dimensional Graphics and Realism , 2022 .

[65]  Marc Levoy,et al.  Feature-based volume metamorphosis , 1995, SIGGRAPH.

[66]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[67]  Przemyslaw Prusinkiewicz,et al.  Development models of herbaceous plants for computer imagery purposes , 1988, SIGGRAPH.

[68]  H. Swinney,et al.  Transition from a uniform state to hexagonal and striped Turing patterns , 1991, Nature.

[69]  L. Held,et al.  Models for embryonic periodicity. , 1992, Monographs in developmental biology.

[70]  Michael J. Lyons,et al.  Stripe selection: An intrinsic property of some pattern‐forming models with nonlinear dynamics , 1992, Developmental dynamics : an official publication of the American Association of Anatomists.

[71]  C. Pantin Problems of Relative Growth , 1932, Nature.

[72]  Richard E. Parent,et al.  Layered construction for deformable animated characters , 1989, SIGGRAPH.

[73]  Wayne E. Carlson,et al.  Establishing correspondences by topological merging: a new approach to 3-d shape transformation" pro , 1991 .

[74]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[75]  K. Cunningham A study of growth and development in the quarter horse , 1961 .

[76]  Marc Levoy,et al.  Zippered polygon meshes from range images , 1994, SIGGRAPH.

[77]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[78]  D'arcy W. Thompson On growth and form i , 1943 .

[79]  James F. Blinn,et al.  Simulation of wrinkled surfaces , 1978, SIGGRAPH.

[80]  Lance Williams,et al.  Pyramidal parametrics , 1983, SIGGRAPH.

[81]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[82]  Marcelo Walter,et al.  Clonal Mosaic Model for the Synthesis of Mammalian Coat Patterns , 1998, Graphics Interface.

[83]  D. E. Davis,et al.  The Giraffe: Its Biology, Behavior, and Ecology , 1976 .

[84]  J. Murray,et al.  Analysis of a model for complex skin patterns , 1990 .

[85]  S. Kondo,et al.  A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus , 1995, Nature.

[86]  J. Stevenson-Hamilton Wild life in South Africa , 1950 .

[87]  Marc Levoy,et al.  3D painting on scanned surfaces , 1995, I3D '95.

[88]  John F. Hughes,et al.  Scheduled Fourier volume morphing , 1992, SIGGRAPH.

[89]  M. Tanemura,et al.  Geometrical models of territory. I. Models for synchronous and asynchronous settlement of territories. , 1980, Journal of theoretical biology.

[90]  J. C. Martin,et al.  Introduction to Languages and the Theory of Computation" 3rd Ed , 1991 .

[91]  A. E. Needham The growth process in animals , 1969 .

[92]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[93]  T. Fenchel,et al.  Bioenergetics and Growth , 2022 .

[94]  G. Oster,et al.  The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epiboly. , 1990, Development.

[95]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[96]  Przemyslaw Prusinkiewicz,et al.  Modeling and Visualization of Biological Structures , 2000 .

[97]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[98]  Darwyn R. Peachey,et al.  Solid texturing of complex surfaces , 1985, SIGGRAPH.

[99]  D. Mount On Finding Shortest Paths on Convex Polyhedra. , 1985 .

[100]  N S Goel,et al.  Computer simulation of cellular movements: cell-sorting, cellular migration through a mass of cells and contact inhibition. , 1978, Journal of theoretical biology.

[101]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[102]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[103]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[104]  Brian Wyvill,et al.  Introduction to Implicit Surfaces , 1997 .

[105]  Brian Wyvill,et al.  CONTROLLED BLENDING OF PROCEDURAL IMPLICIT SURFACES , 1990 .

[106]  M. Carter Computer graphics: Principles and practice , 1997 .

[107]  Paul A. Beardsley,et al.  Design galleries: a general approach to setting parameters for computer graphics and animation , 1997, SIGGRAPH.

[108]  A. Hart The University of Utah , 1986 .

[109]  HanrahanPat,et al.  Direct WYSIWYG painting and texturing on 3D shapes , 1990 .

[110]  Yakov Kamen,et al.  Fast and Accurate Texture Placement , 1997, IEEE Computer Graphics and Applications.

[111]  Bruce G. Baumgart Winged edge polyhedron representation. , 1972 .

[112]  J. Murray A Pre-pattern formation mechanism for animal coat markings , 1981 .

[113]  Jean-Marc Vézien,et al.  Piecewise surface flattening for non-distorted texture mapping , 1991, SIGGRAPH.

[114]  Nur Arad,et al.  Isometric Texture Mapping for Free‐form Surfaces , 1997, Comput. Graph. Forum.

[115]  Anthony N. Barrett,et al.  Computing in biological science , 1983 .

[116]  J. Murray,et al.  On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[117]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[118]  Anne Innis DAGG EXTERNAL FEATURES OF GIRAFFE , 1968 .

[119]  Charles S. Peskin,et al.  On the construction of the Voronoi mesh on a sphere , 1985 .

[120]  D. Savić Model of pattern formation in animal coatings , 1995 .

[121]  John Price-Wilkin,et al.  Oxford English Dictionary (2nd ed.) , 1991 .

[122]  Przemyslaw Prusinkiewicz,et al.  Visualization of the development of multicellular structures , 1990 .

[123]  R. L. The Mammals of South Africa , 1901, Nature.

[124]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[125]  G. Oster,et al.  Notochord morphogenesis in Xenopus laevis: simulation of cell behavior underlying tissue convergence and extension. , 1991, Development.

[126]  N S Goel,et al.  Computer simulation of engulfment and other movements of embryonic tissues. , 1978, Journal of theoretical biology.

[127]  L G Harrison,et al.  Kinetic theory of living pattern. , 1994, Endeavour.

[128]  A. Fournier,et al.  Shape Transformations Using Union of Spheres , 1995 .

[129]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[130]  Eadweard Muybridge,et al.  Animals in Motion , 1957 .

[131]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[132]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[133]  P. Stevens Patterns in Nature , 1974 .

[134]  D. Sulsky,et al.  A model of cell sorting. , 1984, Journal of theoretical biology.

[135]  G. Cocho,et al.  Discrete systems, cell-cell interactions and color pattern of animals. II. Clonal theory and cellular automata. , 1987, Journal of theoretical biology.

[136]  Przemyslaw Prusinkiewicz,et al.  Modeling seashells , 1992, SIGGRAPH.

[137]  Hans Meinhardt,et al.  Dynamics of stripe formation , 1995, Nature.

[138]  Alyn P. Rockwood,et al.  A generalized de Casteljau approach to 3D free-form deformation , 1994, SIGGRAPH.

[139]  H. Meinhardt,et al.  A model for pattern formation on the shells of molluscs , 1987 .

[140]  H. Meinhardt,et al.  Pattern formation by coupled oscillations: The pigmentation patterns on the shells of molluscs , 1987 .