Structural aspects of asymptotically safe black holes

We study the quantum modifications of classical, spherically symmetric Schwarzschild (anti-) de Sitter black holes within quantum Einstein gravity. The quantum effects are incorporated through the running coupling constants Gk and ?k, computed within the exact renormalization group approach, and a common scale-setting procedure. We find that, in contrast to common intuition, it is actually the cosmological constant that determines the short-distance structure of the RG-improved black hole: in the asymptotic UV the structure of the quantum solutions is universal and given by the classical Schwarzschild?de Sitter solution, entailing a self-similarity between the classical and quantum regime. As a consequence asymptotically safe black holes evaporate completely and no Planck-size remnants are formed. Moreover, the thermodynamic entropy of the critical Nariai black hole is shown to agree with the microstate count based on the effective average action, suggesting that the entropy originates from quantum fluctuations around the mean-field geometry.

[1]  Martin Reuter,et al.  Nonperturbative evolution equation for quantum gravity , 1998 .

[2]  Frank Saueressig,et al.  Taming perturbative divergences in asymptotically safe gravity , 2009, 0902.4630.

[3]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  E. Keski-Vakkuri,et al.  UvA-DARE ( Digital Academic Repository ) Mass , entropy and holography in asymptotically de Sitter spaces , 2001 .

[6]  A. Sfondrini,et al.  Towards integrability for AdS 3 / CFT 2 ?> , 2014, 1406.2971.

[7]  Astrid Eichhorn,et al.  Ghost anomalous dimension in asymptotically safe quantum gravity , 2010, 1001.5033.

[8]  B. Koch,et al.  Renormalization group improved black hole space-time in large extra dimensions , 2009, 0912.4517.

[9]  Wataru Souma,et al.  Non-Trivial Ultraviolet Fixed Point in Quantum Gravity , 1999, hep-th/9907027.

[10]  Roberto Percacci,et al.  The running gravitational couplings , 1998 .

[11]  M. Reuter,et al.  Renormalization group improved gravitational actions: A Brans-Dicke approach , 2004 .

[12]  R. Wald Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics , 1994 .

[13]  A. Bonanno An effective action for asymptotically safe gravity , 2012, 1203.1962.

[14]  Daniel F. Litim,et al.  Black holes and asymptotically safe gravity , 2010, 1002.0260.

[15]  Christoph Rahmede,et al.  ULTRAVIOLET PROPERTIES OF f(R)-GRAVITY , 2007, 0705.1769.

[16]  M. Niedermaier,et al.  Gravitational fixed points from perturbation theory. , 2009, Physical review letters.

[17]  M. Reuter,et al.  Quantum gravity effects in the Kerr spacetime , 2010, 1009.3528.

[18]  Sean M. Carroll,et al.  Spacetime and Geometry: An Introduction to General Relativity , 2003 .

[19]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[20]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[21]  Frank Saueressig,et al.  Quantum Einstein gravity , 2012, 1202.2274.

[22]  H. Gies,et al.  Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity , 2009, 0907.1828.

[23]  P. Ginsparg,et al.  Semiclassical perdurance of de Sitter space , 1983 .

[24]  R. Wald,et al.  Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics , 1994 .

[25]  Alfio Bonanno,et al.  Quantum gravity effects near the null black hole singularity , 1999 .

[26]  M. Reuter,et al.  Is quantum Einstein gravity nonperturbatively renormalizable , 2002 .

[27]  Frank Saueressig,et al.  The R^2 phase-diagram of QEG and its spectral dimension , 2012, 1206.0657.

[28]  Tilman Plehn,et al.  Signatures of gravitational fixed points at the Large Hadron Collider. , 2007, Physical review letters.

[29]  Frank Saueressig,et al.  ASYMPTOTIC SAFETY IN HIGHER-DERIVATIVE GRAVITY , 2009, 0901.2984.

[30]  Black hole pair creation in de Sitter space: a complete one-loop analysis , 2000, hep-th/0003081.

[31]  Cardy–Verlinde formula and thermodynamics of black holes in de Sitter spaces , 2001, hep-th/0112253.

[32]  Behrouz Mirza,et al.  Asymptotic safety, singularities, and gravitational collapse , 2010, 1008.2768.

[33]  J. Cardy Operator Content of Two-Dimensional Conformally Invariant Theories , 1986 .

[34]  L. Abbott,et al.  Stability of gravity with a cosmological constant , 1982 .

[35]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[36]  B. Koch,et al.  Exact renormalization group with optimal scale and its application to cosmology , 2010, 1010.2799.

[37]  Frank Saueressig,et al.  Ghost wavefunction renormalization in asymptotically safe quantum gravity , 2010, 1001.5032.

[38]  B. Koch Renormalization group and black hole production in large extra dimensions , 2007, 0707.4644.

[39]  Renormalization group improved black hole spacetimes , 2000, hep-th/0002196.

[40]  M. Reuter,et al.  Flow equation of quantum Einstein gravity in a higher derivative truncation , 2002 .

[41]  A. Bonanno,et al.  Inflationary solutions in asymptotically safe f(R) theories , 2010, 1006.0192.

[42]  David Mattingly,et al.  Asymptotic safety, asymptotic darkness, and the hoop conjecture in the extreme UV , 2010, 1006.0718.

[43]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[44]  M. Reuter,et al.  Cosmology of the Planck era from a renormalization group for quantum gravity , 2002 .

[45]  M. Reuter,et al.  Running boundary actions, Asymptotic Safety, and black hole thermodynamics , 2012, 1205.3583.

[46]  Frank Saueressig,et al.  On the Renormalization Group Flow of Gravity , 2007, 0712.0445.

[47]  Alfio Bonanno,et al.  Spacetime structure of an evaporating black hole in quantum gravity , 2006 .

[48]  S. Paycha,et al.  Geometric and Topological Methods for Quantum Field Theory , 2007 .