Measuring compound eye optics with microscope and microCT images

The arthropod compound eye is the most prevalent eye type in the animal kingdom, with an impressive range of shapes and sizes. Studying its natural range of morphologies provides insight into visual ecology, development, and evolution. In contrast to the camera-type eyes we possess, external structures of compound eyes often reveal resolution, sensitivity, and field of view if the eye is spherical. Non-spherical eyes, however, require measuring internal structures using imaging technology like MicroCT (μCT). Thus far, there is no efficient tool to automate characterizing compound eye optics. We present two open-source programs: (1) the ommatidia detecting algorithm (ODA), which automatically measures ommatidia count and diameter, and (2) a μCT pipeline, which calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA. We validate these algorithms on images, images of replicas, and μCT scans from eyes of ants, fruit flies, moths, and a bee.

[1]  D. Stavenga The neural superposition eye and its optical demands , 1975, Journal of comparative physiology.

[2]  A. McGregor,et al.  The evolution and development of eye size in flies , 2020, Wiley interdisciplinary reviews. Developmental biology.

[3]  J. Theobald,et al.  Body Size, Rather Than Male Eye Allometry, Explains Chrysomya megacephala (Diptera: Calliphoridae) Activity in Low Light , 2015, Journal of insect science.

[4]  Farah Ahmed,et al.  Exploring miniature insect brains using micro-CT scanning techniques , 2016, Scientific Reports.

[5]  Mikko Juusola,et al.  Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands , 2011, Proceedings of the National Academy of Sciences.

[6]  A. Narendra,et al.  Miniaturisation reduces contrast sensitivity and spatial resolving power in ants , 2019, Journal of Experimental Biology.

[7]  M. Land Visual acuity in insects. , 1997, Annual review of entomology.

[8]  Emily Baird,et al.  X-ray micro computed-tomography , 2017, Current Biology.

[9]  John T. Huber,et al.  A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera, Mymaridae), with comments on its sister genus Kikiki, and discussion on small size limits in arthropods , 2013 .

[10]  Cristina Rueda,et al.  An automated image analysis method to measure regularity in biological patterns: a case study in a Drosophila neurodegenerative model , 2015, Molecular Neurodegeneration.

[11]  Allan W. Snyder,et al.  Information capacity of eyes , 1977, Vision Research.

[12]  T. Glatzel,et al.  Tantulocarida (Crustacea) from the Southern Ocean deep sea, and the description of three new species of Tantulacus Huys, Andersen & Kristensen, 1992 , 2010, Systematic Parasitology.

[13]  Zhi-Qiang Zhang,et al.  Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness (Addenda 2013). , 2013, Zootaxa.

[14]  Emily Baird,et al.  Exploring the visual world of fossilized and modern fungus gnat eyes (Diptera: Keroplatidae) with X-ray microtomography , 2020, Journal of the Royal Society Interface.

[15]  Martin J How,et al.  Light adaptation mechanisms in the eye of the fiddler crab Afruca tangeri , 2020, The Journal of comparative neurology.

[16]  Allan W. Snyder,et al.  Spatial information capacity of compound eyes , 2004, Journal of comparative physiology.

[17]  Doekele G Stavenga,et al.  Analyzing the reflections from single ommatidia in the butterfly compound eye with Voronoi diagrams , 2003, Journal of Neuroscience Methods.

[18]  Markus Friedrich,et al.  Evolution of Insect Eye Development: First Insights from Fruit Fly, Grasshopper and Flour Beetle1 , 2003, Integrative and comparative biology.

[19]  Richard H. White,et al.  The retina of Manduca sexta: rhodopsin expression, the mosaic of green-, blue- and UV-sensitive photoreceptors, and regional specialization , 2003, Journal of Experimental Biology.

[20]  H. Nijhout,et al.  Body size determination in insects: a review and synthesis of size‐ and brain‐dependent and independent mechanisms , 2013, Biological reviews of the Cambridge Philosophical Society.

[21]  A. Snyder Physics of Vision in Compound Eyes , 1979 .

[22]  J. Spaethe,et al.  Functional morphology of the visual system and mating strategies in bumblebees (Hymenoptera, Apidae, Bombus) , 2014 .

[23]  D. O’Carroll,et al.  Higher-order neural processing tunes motion neurons to visual ecology in three species of hawkmoths , 2017, Proceedings of the Royal Society B: Biological Sciences.

[24]  A. Steuwer,et al.  The Dual Function of Orchid Bee Ocelli as Revealed by X-Ray Microtomography , 2016, Current Biology.

[25]  Doekele G. Stavenga,et al.  Pseudopupils of Compound Eyes , 1979 .

[26]  Shampa Ghosh,et al.  Plasticity Through Canalization: The Contrasting Effect of Temperature on Trait Size and Growth in Drosophila , 2018, Front. Cell Dev. Biol..

[27]  I. Flatt,et al.  Notizen: Visual Fixation in Freely Flying Bees , 1977 .

[28]  Zhuoyi Song,et al.  Microsaccadic sampling of moving image information provides Drosophila hyperacute vision , 2017, bioRxiv.

[29]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[30]  T. Wardill,et al.  A Novel Interception Strategy in a Miniature Robber Fly with Extreme Visual Acuity , 2017, Current Biology.

[31]  Automated measurement of ommatidia in the compound eyes of beetles. , 2015, BioTechniques.

[32]  E. Baird,et al.  Bumblebee visual allometry results in locally improved resolution and globally improved sensitivity , 2018, bioRxiv.

[33]  A. McGregor,et al.  Characterization of the Genetic Architecture Underlying Eye Size Variation Within Drosophila melanogaster and Drosophila simulans , 2019, G3: Genes, Genomes, Genetics.

[34]  Douglas J Emlen,et al.  Size and shape: the developmental regulation of static allometry in insects , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[35]  A. Narendra,et al.  Miniaturisation decreases visual navigational competence in ants , 2018, Journal of Experimental Biology.

[36]  Alison M. Sweeney,et al.  Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor , 2006, Journal of Experimental Biology.

[37]  J. Theobald,et al.  Small fruit flies sacrifice temporal acuity to maintain contrast sensitivity , 2018, Vision Research.

[38]  Herbert Baumgärtner,et al.  Der Formensinn und die Sehschärfe der Bienen , 1928, Zeitschrift für vergleichende Physiologie.

[39]  S. Harzsch,et al.  Evolution of eye development in arthropods: phylogenetic aspects. , 2006, Arthropod structure & development.

[40]  E. Warrant Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation , 1999, Vision Research.

[41]  D. O’Carroll,et al.  Wide-field motion tuning in nocturnal hawkmoths , 2010, Proceedings of the Royal Society B: Biological Sciences.

[42]  C. B. Kensler The distribution of spiny lobsters in New Zealand waters (Crustacea: Decapoda: Palinuridae) , 1967 .

[43]  P. Bates,et al.  Developmental model of static allometry in holometabolous insects , 2008, Proceedings of the Royal Society B: Biological Sciences.

[44]  H. Krapp,et al.  In Vivo Time-Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor , 2014, PLoS biology.

[45]  S. Benzer,et al.  Development of the Drosophila retina, a neurocrystalline lattice. , 1976, Developmental biology.

[46]  N. Franceschini,et al.  Pupil and Pseudopupil in the Compound Eye of Drosophila , 1972 .

[47]  G. Mardon,et al.  Quantitative assessment of eye phenotypes for functional genetic studies using Drosophila melanogaster , 2016, bioRxiv.

[48]  John W. Beardsley,et al.  A New Genus of Fairyfly, Kikiki, from the Hawaiian Islands (Hymenoptera: Mymaridae) , 2000 .