The ClosTron: a universal gene knock-out system for the genus Clostridium.

[1]  J. Hinds,et al.  Construction and analysis of chromosomal Clostridium difficile mutants , 2006, Molecular microbiology.

[2]  A. Lambowitz,et al.  Use of targetrons to disrupt essential and nonessential genes in Staphylococcus aureus reveals temperature sensitivity of Ll.LtrB group II intron splicing. , 2006, RNA.

[3]  Phalguni Gupta,et al.  Construction of an Alpha Toxin Gene Knockout Mutant of Clostridium perfringens Type A by Use of a Mobile Group II Intron , 2005, Applied and Environmental Microbiology.

[4]  Peter Dürre,et al.  Handbook on Clostridia , 2005 .

[5]  A. Roberts,et al.  Generation of an erythromycin-sensitive derivative of Clostridium difficile strain 630 (630Deltaerm) and demonstration that the conjugative transposon Tn916DeltaE enters the genome of this strain at multiple sites. , 2005, Journal of medical microbiology.

[6]  A. Lambowitz,et al.  Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. , 2004, Journal of molecular biology.

[7]  T. Atkinson,et al.  Molecular cloning and nucleotide sequence determination of the Bacillus stearothermophilus NCA 1503 superoxide dismutase gene and its overexpression in Escherichia coli , 1991, Applied Microbiology and Biotechnology.

[8]  N. Minton Clostridia in cancer therapy , 2003, Nature Reviews Microbiology.

[9]  Philippe Soucaille,et al.  Development of a Sensitive Gene Expression Reporter System and an Inducible Promoter-Repressor System for Clostridium acetobutylicum , 2003, Applied and Environmental Microbiology.

[10]  E. Papoutsakis,et al.  Design of Antisense RNA Constructs for Downregulation of the Acetone Formation Pathway of Clostridium acetobutylicum , 2003, Journal of bacteriology.

[11]  A. Lambowitz,et al.  Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. , 2003, Nucleic acids research.

[12]  A. Lambowitz,et al.  Genetic Manipulation of Lactococcus lactis by Using Targeted Group II Introns: Generation of Stable Insertions without Selection , 2003, Applied and Environmental Microbiology.

[13]  A. McLeod,et al.  Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier , 2002, Molecular microbiology.

[14]  Eleftherios T. Papoutsakis,et al.  Northern, Morphological, and Fermentation Analysis of spo0A Inactivation and Overexpression in Clostridium acetobutylicum ATCC 824 , 2002, Journal of bacteriology.

[15]  A. Lambowitz,et al.  Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria , 2001, Nature Biotechnology.

[16]  M. Young,et al.  Clostridium beijerinckii andClostridium difficile Detoxify Methylglyoxal by a Novel Mechanism Involving Glycerol Dehydrogenase , 2001, Applied and Environmental Microbiology.

[17]  B. Sullenger,et al.  Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. , 2000, Science.

[18]  M. Belfort,et al.  Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. , 2000, Genes & development.

[19]  George N. Bennett,et al.  Regulation of the sol Locus Genes for Butanol and Acetone Formation in Clostridium acetobutylicumATCC 824 by a Putative Transcriptional Repressor , 1999, Journal of bacteriology.

[20]  M. Belfort,et al.  Retrohoming of a Bacterial Group II Intron Mobility via Complete Reverse Splicing, Independent of Homologous DNA Recombination , 1998, Cell.

[21]  M. Belfort,et al.  A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. , 1997, Genes & development.

[22]  E. Papoutsakis,et al.  Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. , 1996, Microbiology.

[23]  A. Giaccia,et al.  Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. , 1996, Gene therapy.

[24]  G. Bennett,et al.  Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. , 1996, Applied biochemistry and biotechnology.

[25]  J. Rood,et al.  Molecular genetics of the chloramphenicol‐resistance transposon Tn4451 from Clostridium perfringens: the TnpX site‐specific recombinase excises a circular transposon molecule , 1995, Molecular microbiology.

[26]  J. Rood,et al.  Virulence studies on chromosomal α‐toxin and Θ‐toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of α‐toxin in Clostridium perfringens‐mediated gas gangrene , 1995, Molecular microbiology.

[27]  H. Hayashi,et al.  The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens , 1994, Journal of bacteriology.

[28]  M. Young,et al.  Targeted integration of genes into the Clostridium acetobutylicum chromosome , 1994 .

[29]  E. Papoutsakis,et al.  In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824 , 1993, Applied and environmental microbiology.

[30]  J. Rood,et al.  Construction of a sequenced Clostridium perfringens-Escherichia coli shuttle plasmid. , 1992, Plasmid.

[31]  N. Minton,et al.  Physical characterisation of the replication region of the Streptococcus faecalis plasmid pAM beta 1. , 1990, Gene.

[32]  D. Barstow,et al.  The pMTL nic- cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. , 1988, Gene.

[33]  H. Gilbert,et al.  Cloning and expression of the Erwinia chrysanthemi asparaginase gene in Escherichia coli and Erwinia carotovora. , 1986, Journal of general microbiology.

[34]  S. Gatenbeck,et al.  Intermediary Metabolism in Clostridium acetobutylicum: Levels of Enzymes Involved in the Formation of Acetate and Butyrate , 1984, Applied and environmental microbiology.

[35]  J. G. Morris,et al.  Isolation and Partial Characterization of Three Cryptic Plasmids from Strains of Clostridium butyricum , 1981 .

[36]  A. C. Chang,et al.  Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid , 1978, Journal of bacteriology.

[37]  W. V. Shaw [57] Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria , 1975 .