Observation of collapsing radiative shocks in laboratory experiments

This article reports the observation of the dense, collapsed layer produced by a radiative shock in a laboratory experiment. The experiment uses laser irradiation to accelerate a thin layer of solid-density material to above 100km∕s, the first to probe such high velocities in a radiative shock. The layer in turn drives a shock wave through a cylindrical volume of Xe gas (at ∼6mg∕cm3). Radiation from the shocked Xe removes enough energy that the shocked layer increases in density and collapses spatially. This type of system is relevant to a number of astrophysical contexts, providing the potential to observe phenomena of interest to astrophysics and to test astrophysical computer codes.

[1]  N. Calvet,et al.  The Structure and Emission of the Accretion Shock in T Tauri Stars , 1998 .

[2]  J. Papaloizou,et al.  Shock formation in accretion columns - a 2D radiative MHD approach , 1998 .

[3]  Stephen M. Lane,et al.  HYADES—A plasma hydrodynamics code for dense plasma studies , 1994 .

[4]  R. Dautray,et al.  La fusion thermonucléaire par laser , 2010 .

[5]  P. Bell,et al.  Development of a Radiative-Hydrodynamics Testbed Using the Petawatt Laser Facility , 1998 .

[6]  E. Liang,et al.  An Analytic Approximation to Radiative Blast Wave Evolution , 2000 .

[7]  R. McCray,et al.  X-Ray and Ultraviolet Line Emission from SNR 1987A , 1997 .

[8]  A. Burrows,et al.  Shock breakout in SN 1987A , 1992 .

[9]  Jacob Grun,et al.  Dynamical overstability of radiative blast waves: the atomic physics of shock stability. , 2002, Physical review letters.

[10]  E. Vishniac,et al.  On the stability of decelerating shocks , 1989 .

[11]  V Malka,et al.  Observation of laser driven supercritical radiative shock precursors. , 2004, Physical review letters.

[12]  J. Blondin,et al.  Transition to the Radiative Phase in Supernova Remnants , 1998 .

[13]  X‐Rays from the Impact of SN 1987A with Its Circumstellar Ring , 1997 .

[14]  A M Rubenchik,et al.  Investigation of ultrafast laser-driven radiative blast waves. , 2001, Physical review letters.

[15]  L. M. Barker,et al.  Laser interferometer for measuring high velocities of any reflecting surface , 1972 .

[16]  D. Mihalas,et al.  Foundations of Radiation Hydrodynamics , 1985 .

[17]  Frank H. Shu,et al.  The physics of astrophysics. , 1992 .

[18]  J. Watteau La fusion thermonucléaire inertielle par laser , 1994 .

[19]  R. Chevalier,et al.  Emission from circumstellar interaction in normal Type II supernovae , 1994 .

[20]  M. Koenig,et al.  Temperature and electron density measurements on laser driven radiative shocks , 2006 .

[21]  Resnick,et al.  Instability of Taylor-Sedov blast waves propagating through a uniform gas. , 1991, Physical review letters.

[22]  R. P. Drake,et al.  Observation of a hydrodynamically driven, radiative-precursor shock. , 2001, Physical review letters.

[23]  J. Bally,et al.  HERBIG-HARO FLOWS: Probes of Early Stellar Evolution , 2001 .

[24]  R. P. Drake,et al.  CONTEXT AND THEORY FOR PLANAR RADIATIVE SHOCK EXPERIMENTS IN XENON , 2006 .

[25]  Thomas P. Russell,et al.  Shock Compression of Condensed Matter , 2006 .

[26]  Thiell,et al.  Experimental observation of a radiative wave generated in xenon by a laser-driven supercritical shock. , 1986, Physical review letters.