ISOFIT - A program for fitting sorption isotherms to experimental data

Isotherm expressions are important for describing the partitioning of contaminants in environmental systems. ISOFIT (Isotherm Fitting Tool) is a software program that fits isotherm parameters to experimental data via the minimization of a weighted sum of squared error (WSSE) objective function. ISOFIT supports a number of isotherms, including several dual-mode isotherms that combine Freundlich, Langmuir, and Polanyi expressions with a linear partitioning term. To minimize the WSSE objective function, ISOFIT utilizes a hybrid optimization procedure that combines particle swarm optimization with Levenberg-Marquardt nonlinear regression. An initial swarm optimization step identifies promising solutions while circumventing local minima and the follow-on regression step provides local refinement and facilitates the calculation of numerous regression statistics. To demonstrate ISOFIT and evaluate its performance, the program was applied to a readily available sorption dataset and benchmarked against results generated using the MS Excel solver package.

[1]  R. Eganhouse,et al.  Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site. , 2001, Journal of contaminant hydrology.

[2]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[3]  W. W. Muir,et al.  Regression Diagnostics: Identifying Influential Data and Sources of Collinearity , 1980 .

[4]  William P. Ball,et al.  New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks. , 2002 .

[5]  J. O. Rawlings,et al.  Applied Regression Analysis , 1998 .

[6]  Richard L. Cooley,et al.  Regression modeling of ground-water flow , 1990 .

[7]  Eric R. Ziecel Proceedings of the First U.S./Japan Conference on the Frontiers of Statistical Modeling: An Informational Approach , 1994 .

[8]  Anthony J. Jakeman,et al.  Ten iterative steps in development and evaluation of environmental models , 2006, Environ. Model. Softw..

[9]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[10]  Vic A. Cundy,et al.  Incineration of xylene/sorbent packs. A study of conditions at the exit of a full-scale industrial incinerator , 1991 .

[11]  Chih-Ling Tsai,et al.  Autoregressive Model Selection in Small Samples Using a Bias-Corrected Version of AIC , 1994 .

[12]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[13]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[14]  Michael N. Vrahatis,et al.  Tuning PSO Parameters Through Sensitivity Analysis , 2002 .

[15]  C. Eisenhart,et al.  Tables for Testing Randomness of Grouping in a Sequence of Alternatives , 1943 .

[16]  Richard M. Yager,et al.  Detecting influential observations in nonlinear regression modeling of groundwater flow , 1998 .

[17]  J. Filliben The Probability Plot Correlation Coefficient Test for Normality , 1975 .

[18]  K. J. White,et al.  The Durbin-Watson Test for Autocorrelation in Nonlinear Models , 1992 .

[19]  E. Beale,et al.  Confidence Regions in Non‐Linear Estimation , 1960 .

[20]  Alan J. Rabideau,et al.  Evaluation of Granular Activated Carbon, Shale, and Two Organoclays for Use as Sorptive Amendments in Clay Landfill Liners , 2005 .

[21]  Walter J. Weber,et al.  A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments , 1992 .

[22]  William P. Ball,et al.  Adsorption-Partitioning Uptake of Nine Low-Polarity Organic Chemicals on a Natural Sorbent , 1999 .

[23]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[24]  Thiruvenkatachari Viraraghavan,et al.  Removal of Oil from Water by Bentonite Organoclay , 2005 .

[25]  Baoshan Xing,et al.  Competitive Sorption between Atrazine and Other Organic Compounds in Soils and Model Sorbents , 1996 .

[26]  H. Linssen,et al.  Non-linearity measures : a case study , 1975 .

[27]  D. Kinniburgh,et al.  General purpose adsorption isotherms. , 1986, Environmental science & technology.

[28]  William P. Ball,et al.  Long-term sorption of halogenated organic chemicals by aquifer material. 1. Equilibrium , 1991 .

[29]  Santhoji Katare,et al.  A hybrid swarm optimizer for efficient parameter estimation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[30]  J. Durbin,et al.  Testing for serial correlation in least squares regression. II. , 1950, Biometrika.

[31]  L. Matott,et al.  Incorporating Dual-mode Sorption Into Groundwater Contaminant Transport Models , 2006 .

[32]  Mary C. Hill,et al.  Methods and Guidelines for Effective Model Calibration , 2000 .