Structure-aligned guidance estimation in surface parameterization using eigenfunction-based cross field

Display Omitted We present an eigenfunction-based method for surface parameterization.The generated parametric lines are aligned with mutliscale structural features.A new anisotropic parameterization scheme is presented. In this paper, we present a structure-aligned approach for surface parameterization using eigenfunctions from the Laplace-Beltrami operator. Several methods are designed to combine multiple eigenfunctions using isocontours or characteristic values of the eigenfunctions. The combined gradient information of eigenfunctions is then used as a guidance for the cross field construction. Finally, a global parameterization is computed on the surface, with an anisotropy enabled by adapting the cross field to non-uniform parametric line spacings. By combining the gradient information from different eigenfunctions, the generated parametric lines are automatically aligned with the structural features at various scales, and they are insensitive to local detailed features on the surface when low-mode eigenfunctions are used.

[1]  John H. Frazer,et al.  Shape reconstruction by genetic algorithms and artificial neural networks , 2003 .

[2]  Guoliang Xu Discrete Laplace-Beltrami operators and their convergence , 2004, Comput. Aided Geom. Des..

[3]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Leif Kobbelt,et al.  Automatic Generation of Structure Preserving Multiresolution Models , 2005, Comput. Graph. Forum.

[5]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[6]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[7]  Daniele Panozzo,et al.  Fields on symmetric surfaces , 2012, ACM Trans. Graph..

[8]  Denis Zorin,et al.  Controlled-distortion constrained global parametrization , 2013, ACM Trans. Graph..

[9]  Radu Horaud,et al.  Mesh Segmentation Using Laplacian Eigenvectors and Gaussian Mixtures , 2009, AAAI Fall Symposium: Manifold Learning and Its Applications.

[10]  Mikhail Belkin,et al.  Discrete laplace operator on meshed surfaces , 2008, SCG '08.

[11]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[12]  Daniele Panozzo,et al.  Practical quad mesh simplification , 2010, Comput. Graph. Forum.

[13]  Martin Reuter,et al.  Laplace spectra for shape recognition , 2006 .

[14]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[15]  Arthur W. Toga,et al.  Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[16]  Denis Zorin,et al.  Anisotropic quadrangulation , 2010, SPM '10.

[17]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[18]  Bruno Lévy,et al.  Spectral Geometry Processing with Manifold Harmonics , 2008, Comput. Graph. Forum.

[19]  Bruno Lévy,et al.  Quad‐Mesh Generation and Processing: A Survey , 2013, Comput. Graph. Forum.

[20]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[21]  Keenan Crane,et al.  Globally optimal direction fields , 2013, ACM Trans. Graph..

[22]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[23]  Guoliang Xu Consistent approximations of several geometric differential operators and their convergence , 2013 .

[24]  L. Kobbelt,et al.  Spectral quadrangulation with orientation and alignment control , 2008, SIGGRAPH 2008.

[25]  Olga Sorkine-Hornung,et al.  Global parametrization of range image sets , 2011, SA '11.

[26]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[27]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH 2009.

[28]  Denis Zorin,et al.  Global parametrization by incremental flattening , 2012, ACM Trans. Graph..

[29]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH 2006.

[30]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[31]  Bruno Lévy,et al.  N-symmetry direction field design , 2008, TOGS.

[32]  Paolo Cignoni,et al.  Almost Isometric Mesh Parameterization through Abstract Domains , 2010, IEEE Transactions on Visualization and Computer Graphics.

[33]  David Bommes,et al.  Practical Mixed-Integer Optimization for Geometry Processing , 2010, Curves and Surfaces.

[34]  Bert Jüttler,et al.  Spectral Quadrangulation with Boundary Conformation , 2011 .

[35]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[36]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[37]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[38]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[39]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[40]  Hujun Bao,et al.  3D surface filtering using spherical harmonics , 2004, Comput. Aided Des..

[41]  Klaus Mueller,et al.  Uniform texture synthesis and texture mapping using global parameterization , 2005, The Visual Computer.

[42]  Igor Guskov An anisotropic mesh parameterization scheme , 2004, Engineering with Computers.

[43]  Daniela Giorgi,et al.  Discrete Laplace-Beltrami operators for shape analysis and segmentation , 2009, Comput. Graph..