A Review of Smooth Variable Structure Filters: Recent Advances in Theory and Applications

The smooth variable structure filter (SVSF) is a relatively new state and parameter estimation technique. Introduced in 2007, it is based on the sliding mode concept, and is formulated in a predictor-corrector fashion. The main advantages of the SVSF, over other estimation methods, are robustness to modeling errors and uncertainties, and its ability to detect system changes. Recent developments have looked at improving the SVSF from its original form. This review paper provides an overview of the SVSF, and summarizes the main advances in its theory.Copyright © 2015 by ASME

[1]  Jean-Jacques E. Slotine,et al.  The Robust Control of Robot Manipulators , 1985 .

[2]  Jean-Jacques E. Slotine,et al.  Robot analysis and control , 1988, Autom..

[3]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[5]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[6]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[7]  Saeid Habibi,et al.  The Extended Variable Structure Filter , 2006 .

[8]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[9]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[10]  Jean-Jacques E. Slotine,et al.  Sliding controller design for non-linear systems , 1984 .

[11]  A. Jaffer,et al.  Optimal sequential estimation of discrete processes with Markov interrupted observations , 1971 .

[12]  Sarah K. Spurgeon,et al.  Sliding mode observers: a survey , 2008, Int. J. Syst. Sci..

[13]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[14]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[15]  Saeid R. Habibi,et al.  Novel Model-Based Estimators for the Purposes of Fault Detection and Diagnosis , 2013, IEEE/ASME Transactions on Mechatronics.

[16]  Amin G. Jaffer,et al.  Recursive Bayesian estimation with uncertain observation (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[17]  Thia Kirubarajan,et al.  THE SMOOTH PARTICLE VARIABLE STRUCTURE FILTER , 2012 .

[18]  S. Andrew Gadsden,et al.  Derivation of an optimal boundary layer width for the smooth variable structure filter , 2011, Proceedings of the 2011 American Control Conference.

[19]  H. P. Blom An efficient filter for abruptly changing systems , 1984, The 23rd IEEE Conference on Decision and Control.

[20]  G. A. Ackerson,et al.  On state estimation in switching environments , 1968 .

[21]  D. Magill Optimal adaptive estimation of sampled stochastic processes , 1965 .

[22]  M. Corless,et al.  Ultimate Boundedness and Asymptotic Stability of a Class of Uncertain Dynamical Systems via Continuous and Discontinuous Feedback Control , 1984 .

[23]  Saeid Habibi,et al.  Estimation using a new variable structure filter , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[24]  S. Andrew Gadsden,et al.  Fault detection of an engine using a neural network trained by the smooth variable structure filter , 2011, 2011 IEEE International Conference on Control Applications (CCA).

[25]  S. Andrew Gadsden,et al.  A new form of the smooth variable structure filter with a covariance derivation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[26]  Vadim I. Utkin,et al.  Sliding Modes and their Application in Variable Structure Systems , 1978 .

[27]  S. Andrew Gadsden,et al.  Combined cubature Kalman and smooth variable structure filtering: A robust nonlinear estimation strategy , 2014, Signal Process..

[28]  A. N. Kolmogorov,et al.  Interpolation and extrapolation of stationary random sequences. , 1962 .

[29]  Ryan Ahmed Training of Neural Networks Using the Smooth Variable Structure Filter with Application to Fault Detection , 2011 .

[30]  Saeid Habibi,et al.  The Smooth Variable Structure Filter , 2007, Proceedings of the IEEE.

[31]  M. Athans,et al.  State Estimation for Discrete Systems with Switching Parameters , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[32]  S. Andrew Gadsden,et al.  Kalman filtering strategies utilizing the chattering effects of the smooth variable structure filter , 2013, Signal Process..

[33]  Saeid Habibi,et al.  A New Robust Filtering Strategy for Linear Systems , 2012 .

[34]  Thia Kirubarajan,et al.  Kalman and smooth variable structure filters for robust estimation , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[35]  Saeid Habibi,et al.  The Variable Structure Filter , 2002 .

[36]  Stephen Andrew Gadsden,et al.  SMOOTH VARIABLE STRUCTURE FILTERING: THEORY AND APPLICATIONS , 2011 .