Mixed‐grid and staggered‐grid finite‐difference methods for frequency‐domain acoustic wave modelling
暂无分享,去创建一个
[1] D. Boore,et al. Finite Difference Methods for Seismic Wave Propagation in Heterogeneous Materials , 1972 .
[2] R. Madariaga. Dynamics of an expanding circular fault , 1976, Bulletin of the Seismological Society of America.
[3] K. R. Kelly,et al. SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH , 1976 .
[4] B. Engquist,et al. Absorbing boundary conditions for acoustic and elastic wave equations , 1977, Bulletin of the Seismological Society of America.
[5] C. Langston,et al. Three-dimensional ray tracing and the method of principal curvature for geometric spreading , 1983 .
[6] Jean Virieux,et al. SH-wave propagation in heterogeneous media: velocity-stress finite-difference method , 1984 .
[7] A. Tarantola. Inversion of seismic reflection data in the acoustic approximation , 1984 .
[8] Olav Holberg,et al. Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena , 1985 .
[9] I. R. Mufti. SEISMIC MODELING IN THE IMPLICIT MODE , 1985 .
[10] J. Virieux. P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .
[11] M. A. Dablain,et al. The application of high-order differencing to the scalar wave equation , 1986 .
[12] Olav Holberg,et al. COMPUTATIONAL ASPECTS OF THE CHOICE OF OPERATOR AND SAMPLING INTERVAL FOR NUMERICAL DIFFERENTIATION IN LARGE-SCALE SIMULATION OF WAVE PHENOMENA* , 1987 .
[13] A. Levander. Fourth-order finite-difference P-SV seismograms , 1988 .
[14] J. Sochacki. Absorbing boundary conditions for the elastic wave equations , 1988 .
[15] R. Pratt. Inverse theory applied to multisource cross-hole tomography, Part2 : Elastic wave-equation method , 1990 .
[16] R. Pratt,et al. INVERSE THEORY APPLIED TO MULTI‐SOURCE CROSS‐HOLE TOMOGRAPHY.: PART 1: ACOUSTIC WAVE‐EQUATION METHOD1 , 1990 .
[17] Gerard T. Schuster,et al. Parsimonious staggered grid finite‐differencing of the wave equation , 1990 .
[18] Timothy A. Davis,et al. An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .
[19] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[20] Robert W. Graves,et al. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences , 1996, Bulletin of the Seismological Society of America.
[21] C. Shin,et al. An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator , 1996 .
[22] Josef Ballmann,et al. Two techniques for the absorption of elastic waves using an artificial transition layer , 1997 .
[23] C. Shin,et al. A frequency‐space 2-D scalar wave extrapolator using extended 25-point finite‐difference operator , 1998 .
[24] I. Štekl,et al. Accurate viscoelastic modeling by frequency‐domain finite differences using rotated operators , 1998 .
[25] S. Shapiro,et al. Modeling the propagation of elastic waves using a modified finite-difference grid , 2000 .
[26] Modelisation et inversion de la forme d'onde en domaine frequentiel : applications a la tomographie multi-offsets , 2001 .
[27] Propagation des ondes : approches espace et ondelette , 2002 .
[28] Adaptive wavelet-based finite-difference modelling of SH-wave propagation , 2002 .
[29] Dynamic Rupture Simulation of Bending Faults With a Finite Difference Approach , 2002 .