Averaging for superconvergence: Verification and application of 2D edge elements to Maxwell’s equations in metamaterials☆

Abstract In this paper, a simple averaging technique for edge elements is justified to improve the standard convergence rate (hence achieving superconvergence) when they are used to solve the Maxwell’s equations. For simplicity, here we focus on the lowest-order triangular edge element, which is widely used in practice. Though there exists no natural superconvergence points for the numerical solution obtained on such an edge element, superconvergence can be obtained after a simple average of solutions over the neighboring elements. A comprehensive analysis for the lowest-order triangular edge element is carried out, and one-order higher convergence rate than the standard interpolation error estimate is proved for the averaged solution at midpoints of those interior edges of parallelograms (formed by two triangles), i.e., superconvergence happens at the parallelogram centers. We also provide detailed analysis to explain why several cases do not have superconvergence. Extensive numerical results consistent with our analysis are presented.

[1]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[2]  Peter Monk,et al.  Superconvergence of finite element approximations to Maxwell's equations , 1994 .

[3]  Qun Lin,et al.  Global superconvergence for Maxwell's equations , 2000, Math. Comput..

[4]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[5]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[6]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[7]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids , 2003, SIAM J. Numer. Anal..

[8]  Rolf Stenberg,et al.  Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .

[9]  Raytcho D. Lazarov,et al.  Superconvergence analysis of approximate boundary-flux calculations , 1992 .

[10]  Carsten Carstensen,et al.  Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .

[11]  Yunqing Huang,et al.  Superconvergence analysis for time‐dependent Maxwell's equations in metamaterials , 2012 .

[12]  Mark Ainsworth A posteriori error estimation for non-conforming quadrilateral finite elements , 2005 .

[13]  Richard E. Ewing,et al.  Sharp L2-Error Estimates and Superconvergence of Mixed Finite Element Methods for Non-Fickian Flows in Porous Media , 2002, SIAM J. Numer. Anal..

[14]  Todd Arbogast,et al.  Mixed methods using standard conforming finite elements , 2009 .

[15]  Zhimin Zhang,et al.  Natural Superconvergence Points in Three-Dimensional Finite Elements , 2008, SIAM J. Numer. Anal..

[16]  Jim Douglas,et al.  Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable , 1981 .

[17]  Mary F. Wheeler,et al.  Uniform Convergence and Superconvergence of Mixed Finite Element Methods on Anisotropically Refined Grids , 2000, SIAM J. Numer. Anal..

[18]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[19]  Junping Wang,et al.  Superconvergence of Finite Element Approximations for the Stokes Problem by Projection Methods , 2001, SIAM J. Numer. Anal..

[20]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[21]  Jichun Li Numerical convergence and physical fidelity analysis for Maxwell’s equations in metamaterials , 2009 .

[22]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[23]  Superconvergence of recovered gradients of discrete time/piecewise linear Galerkin approximations for linear and nonlinear parabolic problems , 1994 .

[24]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[25]  Qun Lin,et al.  Superconvergence analysis for Maxwell's equations in dispersive media , 2007, Math. Comput..

[26]  Wei Yang,et al.  Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials , 2011, J. Comput. Phys..

[27]  Zhonghua Qiao,et al.  Superconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell’s Equations , 2011, J. Sci. Comput..

[28]  R. Mittra,et al.  FDTD Modeling of Metamaterials: Theory and Applications , 2008 .

[29]  Ivo Babuška,et al.  Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .