Averaging for superconvergence: Verification and application of 2D edge elements to Maxwell’s equations in metamaterials☆
暂无分享,去创建一个
[1] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[2] Peter Monk,et al. Superconvergence of finite element approximations to Maxwell's equations , 1994 .
[3] Qun Lin,et al. Global superconvergence for Maxwell's equations , 2000, Math. Comput..
[4] Willie J Padilla,et al. Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.
[5] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[6] Carsten Carstensen,et al. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..
[7] Jinchao Xu,et al. Asymptotically Exact A Posteriori Error Estimators, Part II: General Unstructured Grids , 2003, SIAM J. Numer. Anal..
[8] Rolf Stenberg,et al. Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .
[9] Raytcho D. Lazarov,et al. Superconvergence analysis of approximate boundary-flux calculations , 1992 .
[10] Carsten Carstensen,et al. Averaging technique for FE – a posteriori error control in elasticity. Part I: Conforming FEM , 2001 .
[11] Yunqing Huang,et al. Superconvergence analysis for time‐dependent Maxwell's equations in metamaterials , 2012 .
[12] Mark Ainsworth. A posteriori error estimation for non-conforming quadrilateral finite elements , 2005 .
[13] Richard E. Ewing,et al. Sharp L2-Error Estimates and Superconvergence of Mixed Finite Element Methods for Non-Fickian Flows in Porous Media , 2002, SIAM J. Numer. Anal..
[14] Todd Arbogast,et al. Mixed methods using standard conforming finite elements , 2009 .
[15] Zhimin Zhang,et al. Natural Superconvergence Points in Three-Dimensional Finite Elements , 2008, SIAM J. Numer. Anal..
[16] Jim Douglas,et al. Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable , 1981 .
[17] Mary F. Wheeler,et al. Uniform Convergence and Superconvergence of Mixed Finite Element Methods on Anisotropically Refined Grids , 2000, SIAM J. Numer. Anal..
[18] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[19] Junping Wang,et al. Superconvergence of Finite Element Approximations for the Stokes Problem by Projection Methods , 2001, SIAM J. Numer. Anal..
[20] Zhimin Zhang,et al. Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..
[21] Jichun Li. Numerical convergence and physical fidelity analysis for Maxwell’s equations in metamaterials , 2009 .
[22] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[24] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[25] Qun Lin,et al. Superconvergence analysis for Maxwell's equations in dispersive media , 2007, Math. Comput..
[26] Wei Yang,et al. Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials , 2011, J. Comput. Phys..
[27] Zhonghua Qiao,et al. Superconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell’s Equations , 2011, J. Sci. Comput..
[28] R. Mittra,et al. FDTD Modeling of Metamaterials: Theory and Applications , 2008 .
[29] Ivo Babuška,et al. Computer‐based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations , 1996 .