The Asymptotics of Large Constrained Graphs

We show, through local estimates and simulation, that if one constrains simple graphs by their densitiesof edges and τ of triangles, then asymptotically (in the number of vertices) for over 95% of the possible range of those densities there is a well-defined typical graph, and it has a very simple structure: the vertices are decomposed into two subsets V1 and V2 of fixed relative size c and 1 − c, and there are well-defined probabilities of edges, g jk, between v j ∈ Vj, and vk ∈ Vk. Furthermore the four parameters c, g11, g22 and g12 are smooth functions of (�, τ ) except at two smooth 'phase transition' curves.

[1]  P. Diaconis,et al.  Estimating and understanding exponential random graph models , 2011, 1102.2650.

[2]  P. Gill,et al.  User's Guide for SOL/NPSOL: A Fortran Package for Nonlinear Programming. , 1983 .

[3]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[4]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[5]  Mei Yin,et al.  Phase transitions in exponential random graphs , 2011, 1108.0649.

[6]  C. Borgs,et al.  Moments of Two-Variable Functions and the Uniqueness of Graph Limits , 2008, 0803.1244.

[7]  Oleg Pikhurko,et al.  Minimum Number of k-Cliques in Graphs with Bounded Independence Number , 2012, Combinatorics, Probability and Computing.

[8]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[9]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[10]  Yufei Zhao,et al.  On replica symmetry of large deviations in random graphs , 2012, Random Struct. Algorithms.

[11]  R. A. R. A Z B O R O V On the minimal density of triangles in graphs , 2008 .

[12]  László Lovász,et al.  Finitely forcible graphons , 2009, J. Comb. Theory, Ser. B.

[13]  Sourav Chatterjee,et al.  The large deviation principle for the Erdős-Rényi random graph , 2011, Eur. J. Comb..

[14]  Charles Radin,et al.  Singularities in the Entropy of Asymptotically Large Simple Graphs , 2013, 1302.3531.

[15]  Michel Deza,et al.  Fullerenes and disk-fullerenes , 2013 .

[16]  Alessandro Rinaldo,et al.  Asymptotic quantization of exponential random graphs , 2013, 1311.1738.

[17]  Charles Radin,et al.  Phase transitions in a complex network , 2013, 1301.1256.

[18]  B. Szegedy,et al.  Szemerédi’s Lemma for the Analyst , 2007 .

[19]  Hugo Touchette,et al.  An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles , 2004 .

[20]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[21]  Alexander A. Razborov,et al.  On the Minimal Density of Triangles in Graphs , 2008, Combinatorics, Probability and Computing.

[22]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[23]  Charles Radin,et al.  Emergent Structures in Large Networks , 2013, J. Appl. Probab..

[24]  Mei Yin Critical Phenomena in Exponential Random Graphs , 2012, 1208.2992.