Global well posedness for the Gross-Pitaevskii equation with an angular momentum rotational term in three dimensions
暂无分享,去创建一个
[1] B. Simon,et al. Schrödinger operators with magnetic fields. I. general interactions , 1978 .
[2] E. M. Lifshitz,et al. CHAPTER VI – PERTURBATION THEORY , 1977 .
[3] T. Cazenave. Semilinear Schrodinger Equations , 2003 .
[4] E. M. Lifshitz,et al. Quantum mechanics: Non-relativistic theory, , 1959 .
[5] Horng-Tzer Yau,et al. Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate , 2004, math-ph/0606017.
[6] C. E. Wieman,et al. Vortices in a Bose Einstein condensate , 1999, QELS 2000.
[7] T. Tao,et al. Endpoint Strichartz estimates , 1998 .
[8] Weizhu Bao,et al. Ground, Symmetric and Central Vortex States in Rotating Bose-Einstein Condensates , 2005 .
[9] Gross-Pitaevskii Theory of the Rotating Bose Gas , 2001, math-ph/0110010.
[10] Qiang Du,et al. Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..
[11] J. R. Ensher,et al. Dynamics of component separation in a binary mixture of Bose-Einstein condensates , 1998 .
[12] Dalibard,et al. Vortex formation in a stirred bose-einstein condensate , 1999, Physical review letters.
[13] W. Ketterle,et al. Bose-Einstein condensation , 1997 .
[14] E. Gross. Structure of a quantized vortex in boson systems , 1961 .
[15] J Dalibard,et al. Stationary states of a rotating Bose-Einstein condensate: routes to vortex nucleation. , 2001, Physical review letters.
[16] Horng-Tzer Yau,et al. Rigorous derivation of the Gross-Pitaevskii equation. , 2006, Physical review letters.
[17] Rémi Carles,et al. Semi-classical Schrödinger equations with harmonic potential and nonlinear perturbation , 2003, math/0702656.
[18] Elliott H. Lieb,et al. Derivation of the Gross-Pitaevskii Equation for Rotating Bose Gases , 2006 .
[19] Ling Hsiao,et al. Global well posedness for the Gross–Pitaevskii equation with an angular momentum rotational term , 2008, 0811.4219.