Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations

Abstraction techniques based on simulation relations have become an important and effective proof technique to avoid the infamous state space explosion problem. In the context of Markov chains, strong and weak simulation relations have been proposed [17,6], together with corresponding decision algorithms [3,5], but it is as yet unclear whether they can be used as effectively as their non-stochastic counterparts. This paper presents drastically improved algorithms to decide whether one (discrete- or continuous-time) Markov chain strongly or weakly simulates another. The key innovation is the use of parametric maximum flow techniques to amortize computations.

[1]  Éva Tardos,et al.  A faster parametric minimum-cut algorithm , 1994, Algorithmica.

[2]  William H. Sanders,et al.  Optimal state-space lumping in Markov chains , 2003, Inf. Process. Lett..

[3]  Lu Tian,et al.  On some equivalence relations for probabilistic processes , 1992, Fundamenta Informaticae.

[4]  Robert E. Tarjan,et al.  Improved Algorithms for Bipartite Network Flow , 1994, SIAM J. Comput..

[5]  Christel Baier,et al.  Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov decision processes , 2005, Theor. Comput. Sci..

[6]  Thomas A. Henzinger,et al.  Computing simulations on finite and infinite graphs , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[7]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[8]  Lijun Zhang,et al.  Deciding Simulations on Probabilistic Automata , 2007, ATVA.

[9]  David Anthony Parker,et al.  Implementation of symbolic model checking for probabilistic systems , 2003 .

[10]  Reza Pulungan,et al.  Does Clock Precision Influence ZigBee's Energy Consumptions? , 2007, OPODIS.

[11]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[12]  Carla Piazza,et al.  From Bisimulation to Simulation: Coarsest Partition Problems , 2003, Journal of Automated Reasoning.

[13]  Holger Hermanns,et al.  Interactive Markov Chains , 2002, Lecture Notes in Computer Science.

[14]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[15]  Bard Bloom,et al.  Transformational Design and Implementation of a New Efficient Solution to the Ready Simulation Problem , 1995, Sci. Comput. Program..

[16]  Andrew V. Goldberg,et al.  Recent Developments in Maximum Flow Algorithms (Invited Lecture) , 1998, SWAT.

[17]  Christel Baier,et al.  Simulation for Continuous-Time Markov Chains , 2002, CONCUR.

[18]  Kurt Mehlhorn,et al.  An Analysis of the Highest-Level Selection Rule in the Preflow-Push Max-Flow , 1999, Inf. Process. Lett..

[19]  Robert Knast Continuous-Time Probabilistic Automata , 1969, Inf. Control..

[20]  Christel Baier,et al.  Weak Bisimulation for Fully Probabilistic Processes , 1997, FBT.

[21]  Robert K. Brayton,et al.  Verifying Continuous Time Markov Chains , 1996, CAV.

[22]  Marco Ajmone Marsan,et al.  Modelling with Generalized Stochastic Petri Nets , 1995, PERV.

[23]  Robert E. Tarjan,et al.  A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..

[24]  Kim Guldstrand Larsen,et al.  Specification and refinement of probabilistic processes , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[25]  Nicolás Wolovick,et al.  A Characterization of Meaningful Schedulers for Continuous-Time Markov Decision Processes , 2006, FORMATS.

[26]  Frits W. Vaandrager,et al.  Cost-optimization of the IPv4 zeroconf protocol , 2003, 2003 International Conference on Dependable Systems and Networks, 2003. Proceedings..

[27]  Kurt Mehlhorn,et al.  Can A Maximum Flow be Computed on o(nm) Time? , 1990, ICALP.

[28]  Christel Baier,et al.  Deciding Bisimilarity and Similarity for Probabilistic Processes , 2000, J. Comput. Syst. Sci..

[29]  William H. Sanders,et al.  Reduced Base Model Construction Methods for Stochastic Activity Networks , 1991, IEEE J. Sel. Areas Commun..

[30]  Robert E. Tarjan,et al.  A faster deterministic maximum flow algorithm , 1992, SODA '92.

[31]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[32]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[33]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[34]  Lijun Zhang,et al.  Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations , 2007, Log. Methods Comput. Sci..

[35]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[36]  William J. Stewart,et al.  Introduction to the numerical solution of Markov Chains , 1994 .

[37]  Christel Baier,et al.  Comparative branching-time semantics for Markov chains , 2005, Inf. Comput..

[38]  Edmund M. Clarke,et al.  Model checking and abstraction , 1994, TOPL.

[39]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[40]  Bengt Jonsson Simulations Between Specifications of Distributed Systems , 1991, CONCUR.

[41]  Roberto Segala,et al.  Decision Algorithms for Probabilistic Bisimulation , 2002, CONCUR.

[42]  Robin Milner,et al.  An Algebraic Definition of Simulation Between Programs , 1971, IJCAI.

[43]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[44]  Lijun Zhang,et al.  Decision algorithms for probabilistic simulations , 2009 .

[45]  Bernhard Walke,et al.  IEEE 802.11e/802.11k wireless LAN: spectrum awareness for distributed resource sharing , 2004, Wirel. Commun. Mob. Comput..

[46]  Christel Baier,et al.  Model-Checking Algorithms for Continuous-Time Markov Chains , 2002, IEEE Trans. Software Eng..

[47]  Christel Baier,et al.  Probabilistic weak simulation is decidable in polynomial time , 2004, Inf. Process. Lett..

[48]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .