On Structural and Graph Theoretic Properties of Higher Order Delaunay Graphs

Given a set P of n points in the plane, the order-k Delaunay graph is a graph with vertex set P and an edge exists between two points p, q ∈ P when there is a circle through p and q with at most k other points of P in its interior. We provide upper and lower bounds on the number of edges in an order-k Delaunay graph. We study the combinatorial structure of the set of triangulations that can be constructed with edges of this graph. Furthermore, we show that the order-k Delaunay graph is connected under the flip operation when k ≤ 1 but not necessarily connected for other values of k. If P is in convex position then the order-k Delaunay graph is connected for all k ≥ 0. We show that the order-k Gabriel graph, a subgraph of the order-k Delaunay graph, is Hamiltonian for k ≥ 15. Finally, the order-k Delaunay graph can be used to efficiently solve a coloring problem with applications to frequency assignments in cellular networks.

[1]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, Second Edition , 2000, Wiley Series in Probability and Mathematical Statistics.

[2]  Diane L. Souvaine,et al.  An Experimental Study of Old and New Depth Measures , 2006, ALENEX.

[3]  Chee-Keng Yap Symbolic Treatment of Geometric Degeneration , 1990, J. Symb. Comput..

[4]  Jorge Urrutia Open Problems in Computational Geometry , 2002, LATIN.

[5]  Ruei-Chuan Chang,et al.  Computing the k-relative neighborhood graphs in Euclidean plane , 1991, Pattern Recognit..

[6]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[7]  Sariel Har-Peled,et al.  On conflict-free coloring of points and simple regions in the plane , 2003, SCG '03.

[8]  Marshall W. Bern,et al.  Triangulations and Mesh Generation , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[9]  Micha Sharir,et al.  Arrangements and Their Applications , 2000, Handbook of Computational Geometry.

[10]  Chuan Yi Tang,et al.  20-relative Neighborhood Graphs Are Hamiltonian , 1990, J. Graph Theory.

[11]  Maarten Löffler,et al.  Optimization for first order Delaunay triangulations , 2007, Comput. Geom..

[12]  Michael A. Soss On the size of the euclidean sphere of influence graph , 1999, CCCG.

[13]  Manuel Abellanas,et al.  Point set stratification and Delaunay depth , 2005, Comput. Stat. Data Anal..

[14]  Michael B. Dillencourt,et al.  Toughness and Delaunay triangulations , 1987, SCG '87.

[15]  John F. Canny,et al.  A General Approach to Removing Degeneracies , 1995, SIAM J. Comput..

[16]  Joachim Gudmundsson,et al.  Higher order Delaunay triangulations , 2000, Comput. Geom..

[17]  Maarten Löffler,et al.  Generating realistic terrains with higher-order Delaunay triangulations , 2005, Comput. Geom..

[18]  Joachim Gudmundsson,et al.  Constrained higher order Delaunay triangulations , 2005, Comput. Geom..

[19]  Raimund Seidel,et al.  Efficient Perturbations for Handling Geometric Degeneracies , 1997, Algorithmica.

[20]  Olaf Steinbach,et al.  Technische Universit ¨ at Graz , 2009 .

[21]  Ruei-Chuan Chang,et al.  The K-Gabriel Graphs and Their Applications , 1990, SIGAL International Symposium on Algorithms.

[22]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[23]  E. Welzl,et al.  Convex Quadrilaterals and k-Sets , 2003 .

[24]  David M. Mount,et al.  Globally-Equiangular triangulations of co-circular points in 0(n log n) time , 1988, SCG '88.

[25]  Diane L. Souvaine,et al.  Computational Geometry and Statistical Depth Measures , 2004 .

[26]  Marc J. van Kreveld,et al.  Optimal higher order Delaunay triangulations of polygons , 2008, Comput. Geom..

[27]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[28]  Raimund Seidel,et al.  Circles through two points that always enclose many points , 1989 .

[29]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[30]  Michael B. Dillencourt Traveling Salesman Cycles are not Always Subgraphs of Delaunay Triangulations or of Minimum Weight Triangulations , 1987, Inf. Process. Lett..

[31]  Godfried T. Toussaint,et al.  Relative neighborhood graphs and their relatives , 1992, Proc. IEEE.

[32]  D. T. Lee,et al.  On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.

[33]  Steven Fortune,et al.  Voronoi Diagrams and Delaunay Triangulations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..