Efficient Temporal Processing of Naturalistic Sounds

In this study, we investigate the ability of the mammalian auditory pathway to adapt its strategy for temporal processing under natural stimulus conditions. We derive temporal receptive fields from the responses of neurons in the inferior colliculus to vocalization stimuli with and without additional ambient noise. We find that the onset of ambient noise evokes a change in receptive field dynamics that corresponds to a change from bandpass to lowpass temporal filtering. We show that these changes occur within a few hundred milliseconds of the onset of the noise and are evident across a range of overall stimulus intensities. Using a simple model, we illustrate how these changes in temporal processing exploit differences in the statistical properties of vocalizations and ambient noises to increase the information in the neural response in a manner consistent with the principles of efficient coding.

[1]  R. Voss,et al.  ‘1/fnoise’ in music and speech , 1975, Nature.

[2]  R. M. Burger,et al.  Dissecting the circuitry of the auditory system , 2003, Trends in Neurosciences.

[3]  Larry F Hughes,et al.  GABAergic inputs shape responses to amplitude modulated stimuli in the inferior colliculus , 2002, Hearing Research.

[4]  Armin H. Seidl,et al.  Binaural response properties of low-frequency neurons in the gerbil dorsal nucleus of the lateral lemniscus. , 2006, Journal of neurophysiology.

[5]  Lee M. Miller,et al.  The Contribution of Spike Threshold to Acoustic Feature Selectivity, Spike Information Content, and Information Throughput , 2005, The Journal of Neuroscience.

[6]  J. H. van Hateren,et al.  A theory of maximizing sensory information , 2004, Biological Cybernetics.

[7]  A. Rees,et al.  Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea pig inferior colliculus, and their modification by broadband noise. , 1989, The Journal of the Acoustical Society of America.

[8]  Kerry J. Kim,et al.  Slow Na+ Inactivation and Variance Adaptation in Salamander Retinal Ganglion Cells , 2003, The Journal of Neuroscience.

[9]  E. Chichilnisky,et al.  Adaptation to Temporal Contrast in Primate and Salamander Retina , 2001, The Journal of Neuroscience.

[10]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[11]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[12]  Lee M. Miller,et al.  Naturalistic Auditory Contrast Improves Spectrotemporal Coding in the Cat Inferior Colliculus , 2003, The Journal of Neuroscience.

[13]  M S Malmierca,et al.  Contribution of GABA- and glycine-mediated inhibition to the monaural temporal response properties of neurons in the inferior colliculus. , 1996, Journal of neurophysiology.

[14]  B. Grothe Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat. , 1994, Journal of neurophysiology.

[15]  Hagai Attias,et al.  Temporal Low-Order Statistics of Natural Sounds , 1996, NIPS.

[16]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[17]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[18]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[19]  J. Schnupp,et al.  Tuning to Natural Stimulus Dynamics in Primary Auditory Cortex , 2006, Current Biology.

[20]  C. Schreiner,et al.  Short-term adaptation of auditory receptive fields to dynamic stimuli. , 2004, Journal of neurophysiology.

[21]  W. Bialek,et al.  Naturalistic stimuli increase the rate and efficiency of information transmission by primary auditory afferents , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  I. Dean,et al.  Neural population coding of sound level adapts to stimulus statistics , 2005, Nature Neuroscience.

[23]  J. Alonso,et al.  Adaptation to Stimulus Contrast and Correlations during Natural Visual Stimulation , 2007, Neuron.

[24]  N. C. Singh,et al.  Modulation spectra of natural sounds and ethological theories of auditory processing. , 2003, The Journal of the Acoustical Society of America.

[25]  Michael S. Lewicki,et al.  Efficient auditory coding , 2006, Nature.

[26]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[27]  Garrett B Stanley,et al.  Decoupling functional mechanisms of adaptive encoding , 2006, Network.

[28]  Kerry J. Kim,et al.  Temporal Contrast Adaptation in the Input and Output Signals of Salamander Retinal Ganglion Cells , 2001, The Journal of Neuroscience.

[29]  Katherine I. Nagel,et al.  Temporal Processing and Adaptation in the Songbird Auditory Forebrain , 2006, Neuron.

[30]  Anne Hsu,et al.  Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds , 2005, Nature Neuroscience.

[31]  Darragh Smyth,et al.  Methods for first-order kernel estimation: simple-cell receptive fields from responses to natural scenes , 2003, Network.

[32]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[33]  J. B. Demb,et al.  Contrast Adaptation in Subthreshold and Spiking Responses of Mammalian Y-Type Retinal Ganglion Cells , 2005, The Journal of Neuroscience.

[34]  Robert A. Frazor,et al.  Independence of luminance and contrast in natural scenes and in the early visual system , 2005, Nature Neuroscience.

[35]  Adrian Rees,et al.  Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds , 1987, Hearing Research.

[36]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.