Factorization of Differential Operators with Rational Functions Coefficients

In this paper we will give a new efficient method for factorizing differential operators with rational functions coefficients. This method solves the main problem in Beke's factorization method, which is the use of splitting fields and/or Grobner basis.

[1]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[2]  M. Singer Liouvillian Solutions of n-th Order Homogeneous Linear Differential Equations , 1981 .

[3]  B. Beckermann,et al.  A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..

[4]  Marius van der Put,et al.  Galois Action on Solutions of a Differential Equation , 1995, J. Symb. Comput..

[5]  Manuel Bronstein,et al.  On polynomial solutions of linear operator equations , 1995, ISSAC '95.

[6]  Alfred Loewy,et al.  Über vollständig reduzible lineare homogene Differentialgleichungen , 1906 .

[7]  Fritz Schwarz,et al.  A factorization algorithm for linear ordinary differential equations , 1989, ISSAC '89.

[8]  Jacques-Arthur Weil Constantes et polynomes de darboux en algebre differentielle : application aux systemes differentiels lineaires , 1995 .

[9]  Emanuel Beke,et al.  Die Irreducibilität der homogenen linearen Differentialgleichungen , 1894 .

[10]  Serguei P. Tsarev,et al.  An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator , 1996, ISSAC '96.

[11]  Mark van Hoeij,et al.  Rational Solutions of the Mixed Differential Equation and Its Application to Factorization of Differential Operators , 1996, ISSAC.

[12]  D. Grigor'ev,et al.  Complexity of factoring and calculating the GCD of linear ordinary differential operators , 1990 .

[13]  Dima Grigoriev,et al.  Complexity of Factoring and Calculating the GCD of Linear Ordinary Differential Operators , 1990, J. Symb. Comput..

[14]  Mark van Hoeij,et al.  Formal Solutions and Factorization of Differential Operators with Power Series Coefficients , 1997, J. Symb. Comput..

[15]  Mark van Hoeij,et al.  An algorithm for computing invariants of differential Galois groups , 1997 .

[16]  Jerald J. Kovacic,et al.  An Algorithm for Solving Second Order Linear Homogeneous Differential Equations , 1986, J. Symb. Comput..

[17]  Daniel Bertrand,et al.  Équations différentielles linéaires et majorations de multiplicités , 1985 .

[18]  Michael F. Singer,et al.  Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients , 1989, J. Symb. Comput..

[19]  Manuel Bronstein,et al.  An improved algorithm for factoring linear ordinary differential operators , 1994, ISSAC '94.

[20]  Ron Sommeling,et al.  Characteristic classes for irregular singularities , 1994, ISSAC '94.

[21]  Öystein Ore Formale Theorie der linearen Differentialgleichungen. (Erster Teil). , 1932 .

[22]  Michael F. Singer Liouvillian Solutions of Linear Differential Equations with Liouvillian Coefficients , 1989, Computers and Mathematics.

[23]  Manuel Bronstein,et al.  Linear ordinary differential equations: breaking through the order 2 barrier , 1992, ISSAC '92.